Metamath Proof Explorer


Theorem cdlemk28-3

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 14-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
Assertion cdlemk28-3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 simp1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N K HL W H
12 simp21l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N F T
13 simp21r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N F I B
14 simp23 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N N T
15 12 13 14 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N F T F I B N T
16 simp22l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G T
17 simp22r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G I B
18 simp3r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R F = R N
19 16 17 18 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G T G I B R F = R N
20 simp3l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P A ¬ P ˙ W
21 1 2 3 4 5 6 7 8 9 10 cdlemk26b-3 K HL W H F T F I B N T G T G I B R F = R N P A ¬ P ˙ W b T b I B R b R F R b R G b Y G T
22 11 15 19 20 21 syl31anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G b Y G T
23 simp11 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G K HL W H
24 12 3ad2ant1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G F T
25 simp2l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G b T
26 simp123 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G N T
27 24 25 26 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G F T b T N T
28 16 3ad2ant1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G G T
29 simp2r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G a T
30 28 29 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G G T a T
31 simp13l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G P A ¬ P ˙ W
32 simp13r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R F = R N
33 13 3ad2ant1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G F I B
34 simp3l1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G b I B
35 32 33 34 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R F = R N F I B b I B
36 17 3ad2ant1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G G I B
37 simp3r1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G a I B
38 36 37 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G G I B a I B
39 simp3r3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R a R G
40 39 necomd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R G R a
41 simp3r2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R a R F
42 simp3l2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R b R F
43 40 41 42 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R G R a R a R F R b R F
44 simp3l3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R b R G
45 44 necomd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G R G R b
46 1 2 3 4 5 6 7 8 9 10 cdlemk27-3 K HL W H F T b T N T G T a T P A ¬ P ˙ W R F = R N F I B b I B G I B a I B R G R a R a R F R b R F R G R b b Y G = a Y G
47 23 27 30 31 35 38 43 45 46 syl332anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G b Y G = a Y G
48 47 3exp K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G b Y G = a Y G
49 48 ralrimivv K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T a T b I B R b R F R b R G a I B R a R F R a R G b Y G = a Y G
50 neeq1 b = a b I B a I B
51 fveq2 b = a R b = R a
52 51 neeq1d b = a R b R F R a R F
53 51 neeq1d b = a R b R G R a R G
54 50 52 53 3anbi123d b = a b I B R b R F R b R G a I B R a R F R a R G
55 oveq1 b = a b Y G = a Y G
56 54 55 reusv3 b T b I B R b R F R b R G b Y G T b T a T b I B R b R F R b R G a I B R a R F R a R G b Y G = a Y G z T b T b I B R b R F R b R G z = b Y G
57 56 biimpd b T b I B R b R F R b R G b Y G T b T a T b I B R b R F R b R G a I B R a R F R a R G b Y G = a Y G z T b T b I B R b R F R b R G z = b Y G
58 22 49 57 sylc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N z T b T b I B R b R F R b R G z = b Y G