Metamath Proof Explorer


Theorem cdlemk48

Description: Part of proof of Lemma K of Crawley p. 118. Line 4, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk48 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X I / g X P ˙ I / g X P ˙ R G / g X

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp11l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B K HL
13 12 hllatd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B K Lat
14 simp11 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B K HL W H
15 simp12 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B F T F I B
16 simp13 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G T G I B
17 simp21 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B N T
18 simp22 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B P A ¬ P ˙ W
19 simp23 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R F = R N
20 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G / g X T
21 14 15 16 17 18 19 20 syl132anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X T
22 simp3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B I T I I B
23 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s K HL W H F T F I B I T I I B N T P A ¬ P ˙ W R F = R N I / g X T
24 14 15 22 17 18 19 23 syl132anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B I / g X T
25 6 7 ltrnco K HL W H G / g X T I / g X T G / g X I / g X T
26 14 21 24 25 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X I / g X T
27 simp22l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B P A
28 2 5 6 7 ltrnat K HL W H G / g X I / g X T P A G / g X I / g X P A
29 14 26 27 28 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X I / g X P A
30 1 5 atbase G / g X I / g X P A G / g X I / g X P B
31 29 30 syl K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X I / g X P B
32 1 6 7 8 trlcl K HL W H G / g X T R G / g X B
33 14 21 32 syl2anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G / g X B
34 1 2 3 latlej1 K Lat G / g X I / g X P B R G / g X B G / g X I / g X P ˙ G / g X I / g X P ˙ R G / g X
35 13 31 33 34 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X I / g X P ˙ G / g X I / g X P ˙ R G / g X
36 2 3 5 6 7 8 trlcoabs K HL W H G / g X T I / g X T P A ¬ P ˙ W G / g X I / g X P ˙ R G / g X = I / g X P ˙ R G / g X
37 14 21 24 18 36 syl121anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X I / g X P ˙ R G / g X = I / g X P ˙ R G / g X
38 35 37 breqtrd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X I / g X P ˙ I / g X P ˙ R G / g X