Metamath Proof Explorer


Theorem cdlemk56w

Description: Use a fixed element to eliminate P in cdlemk56 . (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses cdlemk6.b B=BaseK
cdlemk6.j ˙=joinK
cdlemk6.m ˙=meetK
cdlemk6.o ˙=ocK
cdlemk6.a A=AtomsK
cdlemk6.h H=LHypK
cdlemk6.t T=LTrnKW
cdlemk6.r R=trLKW
cdlemk6.p P=˙W
cdlemk6.z Z=P˙Rb˙NP˙RbF-1
cdlemk6.y Y=P˙Rg˙Z˙Rgb-1
cdlemk6.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk6.u U=gTifF=NgX
cdlemk6.e E=TEndoKW
Assertion cdlemk56w KHLWHFTNTRF=RNUEUF=N

Proof

Step Hyp Ref Expression
1 cdlemk6.b B=BaseK
2 cdlemk6.j ˙=joinK
3 cdlemk6.m ˙=meetK
4 cdlemk6.o ˙=ocK
5 cdlemk6.a A=AtomsK
6 cdlemk6.h H=LHypK
7 cdlemk6.t T=LTrnKW
8 cdlemk6.r R=trLKW
9 cdlemk6.p P=˙W
10 cdlemk6.z Z=P˙Rb˙NP˙RbF-1
11 cdlemk6.y Y=P˙Rg˙Z˙Rgb-1
12 cdlemk6.x X=ιzT|bTbIBRbRFRbRgzP=Y
13 cdlemk6.u U=gTifF=NgX
14 cdlemk6.e E=TEndoKW
15 simp1 KHLWHFTNTRF=RNKHLWH
16 simp2l KHLWHFTNTRF=RNFT
17 simp2r KHLWHFTNTRF=RNNT
18 simp3 KHLWHFTNTRF=RNRF=RN
19 eqid K=K
20 4 fveq1i ˙W=ocKW
21 9 20 eqtri P=ocKW
22 19 5 6 21 lhpocnel2 KHLWHPA¬PKW
23 22 3ad2ant1 KHLWHFTNTRF=RNPA¬PKW
24 1 19 2 3 5 6 7 8 10 11 12 13 14 cdlemk56 KHLWHFTNTRF=RNPA¬PKWUE
25 15 16 17 18 23 24 syl311anc KHLWHFTNTRF=RNUE
26 1 2 3 4 5 6 7 8 9 10 11 12 13 cdlemk19w KHLWHFTNTRF=RNUF=N
27 25 26 jca KHLWHFTNTRF=RNUEUF=N