Metamath Proof Explorer


Theorem cdlemk6

Description: Part of proof of Lemma K of Crawley p. 118. Apply dalaw . (Contributed by NM, 25-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
Assertion cdlemk6 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F P ˙ G P ˙ N P ˙ R G F -1 ˙ G P ˙ X P ˙ R G F -1 ˙ R X F -1 ˙ X P ˙ P ˙ R X F -1 ˙ N P

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 simp31 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F F I B
10 simp32 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F G I B
11 simp33l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F R G R F
12 9 10 11 3jca K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F F I B G I B R G R F
13 1 2 3 4 5 6 7 8 cdlemk5 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ N P ˙ G P ˙ R G F -1 ˙ X P ˙ R X F -1
14 12 13 syld3an3 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F P ˙ N P ˙ G P ˙ R G F -1 ˙ X P ˙ R X F -1
15 simp11l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F K HL
16 simp22l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F P A
17 simp11 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F K HL W H
18 simp13 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F G T
19 2 4 5 6 ltrnat K HL W H G T P A G P A
20 17 18 16 19 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F G P A
21 simp21r K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F X T
22 2 4 5 6 ltrnat K HL W H X T P A X P A
23 17 21 16 22 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F X P A
24 simp21l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F N T
25 2 4 5 6 ltrnat K HL W H N T P A N P A
26 17 24 16 25 syl3anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F N P A
27 simp12 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F F T
28 4 5 6 7 trlcocnvat K HL W H G T F T R G R F R G F -1 A
29 17 18 27 11 28 syl121anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F R G F -1 A
30 simp33r K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F R X R F
31 4 5 6 7 trlcocnvat K HL W H X T F T R X R F R X F -1 A
32 17 21 27 30 31 syl121anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F R X F -1 A
33 2 3 8 4 dalaw K HL P A G P A X P A N P A R G F -1 A R X F -1 A P ˙ N P ˙ G P ˙ R G F -1 ˙ X P ˙ R X F -1 P ˙ G P ˙ N P ˙ R G F -1 ˙ G P ˙ X P ˙ R G F -1 ˙ R X F -1 ˙ X P ˙ P ˙ R X F -1 ˙ N P
34 15 16 20 23 26 29 32 33 syl133anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F P ˙ N P ˙ G P ˙ R G F -1 ˙ X P ˙ R X F -1 P ˙ G P ˙ N P ˙ R G F -1 ˙ G P ˙ X P ˙ R G F -1 ˙ R X F -1 ˙ X P ˙ P ˙ R X F -1 ˙ N P
35 14 34 mpd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R X R F P ˙ G P ˙ N P ˙ R G F -1 ˙ G P ˙ X P ˙ R G F -1 ˙ R X F -1 ˙ X P ˙ P ˙ R X F -1 ˙ N P