Description: Part of proof of Lemma K of Crawley p. 118. Apply dalaw . (Contributed by NM, 25-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk.b | |
|
cdlemk.l | |
||
cdlemk.j | |
||
cdlemk.a | |
||
cdlemk.h | |
||
cdlemk.t | |
||
cdlemk.r | |
||
cdlemk.m | |
||
Assertion | cdlemk6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk.b | |
|
2 | cdlemk.l | |
|
3 | cdlemk.j | |
|
4 | cdlemk.a | |
|
5 | cdlemk.h | |
|
6 | cdlemk.t | |
|
7 | cdlemk.r | |
|
8 | cdlemk.m | |
|
9 | simp31 | |
|
10 | simp32 | |
|
11 | simp33l | |
|
12 | 9 10 11 | 3jca | |
13 | 1 2 3 4 5 6 7 8 | cdlemk5 | |
14 | 12 13 | syld3an3 | |
15 | simp11l | |
|
16 | simp22l | |
|
17 | simp11 | |
|
18 | simp13 | |
|
19 | 2 4 5 6 | ltrnat | |
20 | 17 18 16 19 | syl3anc | |
21 | simp21r | |
|
22 | 2 4 5 6 | ltrnat | |
23 | 17 21 16 22 | syl3anc | |
24 | simp21l | |
|
25 | 2 4 5 6 | ltrnat | |
26 | 17 24 16 25 | syl3anc | |
27 | simp12 | |
|
28 | 4 5 6 7 | trlcocnvat | |
29 | 17 18 27 11 28 | syl121anc | |
30 | simp33r | |
|
31 | 4 5 6 7 | trlcocnvat | |
32 | 17 21 27 30 31 | syl121anc | |
33 | 2 3 8 4 | dalaw | |
34 | 15 16 20 23 26 29 32 33 | syl133anc | |
35 | 14 34 | mpd | |