Metamath Proof Explorer


Theorem cdleml3N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B = Base K
cdleml1.h H = LHyp K
cdleml1.t T = LTrn K W
cdleml1.r R = trL K W
cdleml1.e E = TEndo K W
cdleml3.o 0 ˙ = g T I B
Assertion cdleml3N K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U = V

Proof

Step Hyp Ref Expression
1 cdleml1.b B = Base K
2 cdleml1.h H = LHyp K
3 cdleml1.t T = LTrn K W
4 cdleml1.r R = trL K W
5 cdleml1.e E = TEndo K W
6 cdleml3.o 0 ˙ = g T I B
7 simp1 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ K HL W H
8 simp2 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ U E V E f T
9 simp31 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ f I B
10 simp32 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ U 0 ˙
11 simp21 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ U E
12 simp23 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ f T
13 1 2 3 5 6 tendoid0 K HL W H U E f T f I B U f = I B U = 0 ˙
14 7 11 12 9 13 syl112anc K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ U f = I B U = 0 ˙
15 14 necon3bid K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ U f I B U 0 ˙
16 10 15 mpbird K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ U f I B
17 simp33 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ V 0 ˙
18 simp22 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ V E
19 1 2 3 5 6 tendoid0 K HL W H V E f T f I B V f = I B V = 0 ˙
20 7 18 12 9 19 syl112anc K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ V f = I B V = 0 ˙
21 20 necon3bid K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ V f I B V 0 ˙
22 17 21 mpbird K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ V f I B
23 1 2 3 4 5 cdleml2N K HL W H U E V E f T f I B U f I B V f I B s E s U f = V f
24 7 8 9 16 22 23 syl113anc K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f
25 simpl1 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E K HL W H
26 simpr K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s E
27 simpl21 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E U E
28 simpl23 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E f T
29 2 3 5 tendocoval K HL W H s E U E f T s U f = s U f
30 25 26 27 28 29 syl121anc K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = s U f
31 30 eqeq1d K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f s U f = V f
32 simp11 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f K HL W H
33 simp2 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f s E
34 simp121 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f U E
35 2 5 tendococl K HL W H s E U E s U E
36 32 33 34 35 syl3anc K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f s U E
37 simp122 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f V E
38 simp3 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f s U f = V f
39 simp123 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f f T
40 simp131 K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f f I B
41 1 2 3 5 tendocan K HL W H s U E V E s U f = V f f T f I B s U = V
42 32 36 37 38 39 40 41 syl132anc K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f s U = V
43 42 3expia K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f s U = V
44 31 43 sylbird K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f s U = V
45 44 reximdva K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U f = V f s E s U = V
46 24 45 mpd K HL W H U E V E f T f I B U 0 ˙ V 0 ˙ s E s U = V