Metamath Proof Explorer


Theorem cdleml3N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B=BaseK
cdleml1.h H=LHypK
cdleml1.t T=LTrnKW
cdleml1.r R=trLKW
cdleml1.e E=TEndoKW
cdleml3.o 0˙=gTIB
Assertion cdleml3N KHLWHUEVEfTfIBU0˙V0˙sEsU=V

Proof

Step Hyp Ref Expression
1 cdleml1.b B=BaseK
2 cdleml1.h H=LHypK
3 cdleml1.t T=LTrnKW
4 cdleml1.r R=trLKW
5 cdleml1.e E=TEndoKW
6 cdleml3.o 0˙=gTIB
7 simp1 KHLWHUEVEfTfIBU0˙V0˙KHLWH
8 simp2 KHLWHUEVEfTfIBU0˙V0˙UEVEfT
9 simp31 KHLWHUEVEfTfIBU0˙V0˙fIB
10 simp32 KHLWHUEVEfTfIBU0˙V0˙U0˙
11 simp21 KHLWHUEVEfTfIBU0˙V0˙UE
12 simp23 KHLWHUEVEfTfIBU0˙V0˙fT
13 1 2 3 5 6 tendoid0 KHLWHUEfTfIBUf=IBU=0˙
14 7 11 12 9 13 syl112anc KHLWHUEVEfTfIBU0˙V0˙Uf=IBU=0˙
15 14 necon3bid KHLWHUEVEfTfIBU0˙V0˙UfIBU0˙
16 10 15 mpbird KHLWHUEVEfTfIBU0˙V0˙UfIB
17 simp33 KHLWHUEVEfTfIBU0˙V0˙V0˙
18 simp22 KHLWHUEVEfTfIBU0˙V0˙VE
19 1 2 3 5 6 tendoid0 KHLWHVEfTfIBVf=IBV=0˙
20 7 18 12 9 19 syl112anc KHLWHUEVEfTfIBU0˙V0˙Vf=IBV=0˙
21 20 necon3bid KHLWHUEVEfTfIBU0˙V0˙VfIBV0˙
22 17 21 mpbird KHLWHUEVEfTfIBU0˙V0˙VfIB
23 1 2 3 4 5 cdleml2N KHLWHUEVEfTfIBUfIBVfIBsEsUf=Vf
24 7 8 9 16 22 23 syl113anc KHLWHUEVEfTfIBU0˙V0˙sEsUf=Vf
25 simpl1 KHLWHUEVEfTfIBU0˙V0˙sEKHLWH
26 simpr KHLWHUEVEfTfIBU0˙V0˙sEsE
27 simpl21 KHLWHUEVEfTfIBU0˙V0˙sEUE
28 simpl23 KHLWHUEVEfTfIBU0˙V0˙sEfT
29 2 3 5 tendocoval KHLWHsEUEfTsUf=sUf
30 25 26 27 28 29 syl121anc KHLWHUEVEfTfIBU0˙V0˙sEsUf=sUf
31 30 eqeq1d KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfsUf=Vf
32 simp11 KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfKHLWH
33 simp2 KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfsE
34 simp121 KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfUE
35 2 5 tendococl KHLWHsEUEsUE
36 32 33 34 35 syl3anc KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfsUE
37 simp122 KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfVE
38 simp3 KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfsUf=Vf
39 simp123 KHLWHUEVEfTfIBU0˙V0˙sEsUf=VffT
40 simp131 KHLWHUEVEfTfIBU0˙V0˙sEsUf=VffIB
41 1 2 3 5 tendocan KHLWHsUEVEsUf=VffTfIBsU=V
42 32 36 37 38 39 40 41 syl132anc KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfsU=V
43 42 3expia KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfsU=V
44 31 43 sylbird KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfsU=V
45 44 reximdva KHLWHUEVEfTfIBU0˙V0˙sEsUf=VfsEsU=V
46 24 45 mpd KHLWHUEVEfTfIBU0˙V0˙sEsU=V