Metamath Proof Explorer


Theorem cffldtocusgr

Description: The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021) (Proof shortened by AV, 17-Nov-2021)

Ref Expression
Hypotheses cffldtocusgr.p P=x𝒫|x=2
cffldtocusgr.g G=fldsSetefndxIP
Assertion cffldtocusgr GComplUSGraph

Proof

Step Hyp Ref Expression
1 cffldtocusgr.p P=x𝒫|x=2
2 cffldtocusgr.g G=fldsSetefndxIP
3 opex BasendxV
4 3 tpid1 BasendxBasendx+ndx+ndx×
5 4 orci BasendxBasendx+ndx+ndx×Basendx*ndx*
6 elun BasendxBasendx+ndx+ndx×*ndx*BasendxBasendx+ndx+ndx×Basendx*ndx*
7 5 6 mpbir BasendxBasendx+ndx+ndx×*ndx*
8 7 orci BasendxBasendx+ndx+ndx×*ndx*BasendxTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
9 df-cnfld fld=Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
10 9 eleq2i BasendxfldBasendxBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
11 elun BasendxBasendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsBasendxBasendx+ndx+ndx×*ndx*BasendxTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
12 10 11 bitri BasendxfldBasendxBasendx+ndx+ndx×*ndx*BasendxTopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
13 8 12 mpbir Basendxfld
14 cnfldbas =Basefld
15 14 pweqi 𝒫=𝒫Basefld
16 15 rabeqi x𝒫|x=2=x𝒫Basefld|x=2
17 1 16 eqtri P=x𝒫Basefld|x=2
18 cnfldstr fldStruct113
19 18 a1i BasendxfldfldStruct113
20 fvex BasendxV
21 cnex V
22 20 21 opeldm BasendxfldBasendxdomfld
23 17 19 2 22 structtocusgr BasendxfldGComplUSGraph
24 13 23 ax-mp GComplUSGraph