Metamath Proof Explorer


Theorem cflim3

Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Hypothesis cflim3.1 AV
Assertion cflim3 LimAcfA=xx𝒫A|x=Acardx

Proof

Step Hyp Ref Expression
1 cflim3.1 AV
2 limord LimAOrdA
3 1 elon AOnOrdA
4 2 3 sylibr LimAAOn
5 cfval AOncfA=y|xy=cardxxAzAwxzw
6 4 5 syl LimAcfA=y|xy=cardxxAzAwxzw
7 fvex cardxV
8 7 dfiin2 xx𝒫A|x=Acardx=y|xx𝒫A|x=Ay=cardx
9 df-rex xx𝒫A|x=Ay=cardxxxx𝒫A|x=Ay=cardx
10 ancom xx𝒫A|x=Ay=cardxy=cardxxx𝒫A|x=A
11 rabid xx𝒫A|x=Ax𝒫Ax=A
12 velpw x𝒫AxA
13 12 anbi1i x𝒫Ax=AxAx=A
14 coflim LimAxAx=AzAwxzw
15 14 pm5.32da LimAxAx=AxAzAwxzw
16 13 15 bitrid LimAx𝒫Ax=AxAzAwxzw
17 11 16 bitrid LimAxx𝒫A|x=AxAzAwxzw
18 17 anbi2d LimAy=cardxxx𝒫A|x=Ay=cardxxAzAwxzw
19 10 18 bitrid LimAxx𝒫A|x=Ay=cardxy=cardxxAzAwxzw
20 19 exbidv LimAxxx𝒫A|x=Ay=cardxxy=cardxxAzAwxzw
21 9 20 bitrid LimAxx𝒫A|x=Ay=cardxxy=cardxxAzAwxzw
22 21 abbidv LimAy|xx𝒫A|x=Ay=cardx=y|xy=cardxxAzAwxzw
23 22 inteqd LimAy|xx𝒫A|x=Ay=cardx=y|xy=cardxxAzAwxzw
24 8 23 eqtr2id LimAy|xy=cardxxAzAwxzw=xx𝒫A|x=Acardx
25 6 24 eqtrd LimAcfA=xx𝒫A|x=Acardx