Metamath Proof Explorer


Theorem chjatom

Description: The join of a closed subspace and an atom equals their subspace sum. Special case of remark in Kalmbach p. 65, stating that if A or B is finite-dimensional, then this equality holds. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chjatom ACBHAtomsA+B=AB

Proof

Step Hyp Ref Expression
1 atom1d BHAtomsxx0B=spanx
2 spansnj ACxA+spanx=Aspanx
3 oveq2 B=spanxA+B=A+spanx
4 oveq2 B=spanxAB=Aspanx
5 3 4 eqeq12d B=spanxA+B=ABA+spanx=Aspanx
6 2 5 imbitrrid B=spanxACxA+B=AB
7 6 expd B=spanxACxA+B=AB
8 7 adantl x0B=spanxACxA+B=AB
9 8 com3l ACxx0B=spanxA+B=AB
10 9 rexlimdv ACxx0B=spanxA+B=AB
11 1 10 biimtrid ACBHAtomsA+B=AB
12 11 imp ACBHAtomsA+B=AB