Metamath Proof Explorer


Theorem chnerlem3

Description: Lemma for chner - trichotomy of integers within the word's domain. (Contributed by Ender Ting, 29-Jan-2026)

Ref Expression
Hypotheses chner.1 φ ˙ Er A
chner.2 φ C Chain A ˙
chner.3 φ J 0 ..^ C
chner.4 φ I 0 ..^ C
Assertion chnerlem3 φ I 0 ..^ J J 0 ..^ I I = J

Proof

Step Hyp Ref Expression
1 chner.1 φ ˙ Er A
2 chner.2 φ C Chain A ˙
3 chner.3 φ J 0 ..^ C
4 chner.4 φ I 0 ..^ C
5 elfzoelz I 0 ..^ C I
6 4 5 syl φ I
7 6 zred φ I
8 elfzoelz J 0 ..^ C J
9 3 8 syl φ J
10 9 zred φ J
11 lttri4 I J I < J I = J J < I
12 7 10 11 syl2anc φ I < J I = J J < I
13 3orcomb I < J I = J J < I I < J J < I I = J
14 12 13 sylib φ I < J J < I I = J
15 elfzonn0 I 0 ..^ C I 0
16 4 15 syl φ I 0
17 16 adantr φ I < J I 0
18 9 adantr φ I < J J
19 simpr φ I < J I < J
20 17 18 19 3jca φ I < J I 0 J I < J
21 elfzo0z I 0 ..^ J I 0 J I < J
22 20 21 sylibr φ I < J I 0 ..^ J
23 22 ex φ I < J I 0 ..^ J
24 elfzonn0 J 0 ..^ C J 0
25 3 24 syl φ J 0
26 25 adantr φ J < I J 0
27 6 adantr φ J < I I
28 simpr φ J < I J < I
29 26 27 28 3jca φ J < I J 0 I J < I
30 elfzo0z J 0 ..^ I J 0 I J < I
31 29 30 sylibr φ J < I J 0 ..^ I
32 31 ex φ J < I J 0 ..^ I
33 idd φ I = J I = J
34 23 32 33 3orim123d φ I < J J < I I = J I 0 ..^ J J 0 ..^ I I = J
35 14 34 mpd φ I 0 ..^ J J 0 ..^ I I = J