Metamath Proof Explorer


Theorem chssoc

Description: A closed subspace less than its orthocomplement is zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chssoc ACAAA=0

Proof

Step Hyp Ref Expression
1 inidm AA=A
2 sslin AAAAAA
3 1 2 eqsstrrid AAAAA
4 chocin ACAA=0
5 4 sseq2d ACAAAA0
6 chle0 ACA0A=0
7 5 6 bitrd ACAAAA=0
8 3 7 imbitrid ACAAA=0
9 simpr ACA=0A=0
10 choccl ACAC
11 ch0le AC0A
12 10 11 syl AC0A
13 12 adantr ACA=00A
14 9 13 eqsstrd ACA=0AA
15 14 ex ACA=0AA
16 8 15 impbid ACAAA=0