Metamath Proof Explorer


Theorem cjcncf

Description: Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion cjcncf *:cn

Proof

Step Hyp Ref Expression
1 cjf *:
2 cjcn2 xy+z+wwx<zwx<y
3 2 rgen2 xy+z+wwx<zwx<y
4 ssid
5 elcncf2 *:cn*:xy+z+wwx<zwx<y
6 4 4 5 mp2an *:cn*:xy+z+wwx<zwx<y
7 1 3 6 mpbir2an *:cn