Metamath Proof Explorer


Theorem clelab

Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993) (Proof shortened by Wolf Lammen, 16-Nov-2019) Avoid ax-11 , see sbc5ALT for more details. (Revised by SN, 2-Sep-2024)

Ref Expression
Assertion clelab Ax|φxx=Aφ

Proof

Step Hyp Ref Expression
1 elissetv Ax|φyy=A
2 exsimpl xx=Aφxx=A
3 eqeq1 x=yx=Ay=A
4 3 cbvexvw xx=Ayy=A
5 2 4 sylib xx=Aφyy=A
6 eleq1 y=Ayx|φAx|φ
7 df-clab yx|φyxφ
8 sb5 yxφxx=yφ
9 7 8 bitri yx|φxx=yφ
10 eqeq2 y=Ax=yx=A
11 10 anbi1d y=Ax=yφx=Aφ
12 11 exbidv y=Axx=yφxx=Aφ
13 9 12 bitrid y=Ayx|φxx=Aφ
14 6 13 bitr3d y=AAx|φxx=Aφ
15 14 exlimiv yy=AAx|φxx=Aφ
16 1 5 15 pm5.21nii Ax|φxx=Aφ