Metamath Proof Explorer


Theorem clim2d

Description: The limit of complex number sequence F is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses clim2d.k kφ
clim2d.f _kF
clim2d.m φM
clim2d.z Z=M
clim2d.c φFA
clim2d.b φkZFk=B
clim2d.x φX+
Assertion clim2d φjZkjBBA<X

Proof

Step Hyp Ref Expression
1 clim2d.k kφ
2 clim2d.f _kF
3 clim2d.m φM
4 clim2d.z Z=M
5 clim2d.c φFA
6 clim2d.b φkZFk=B
7 clim2d.x φX+
8 climrel Rel
9 8 a1i φRel
10 brrelex1 RelFAFV
11 9 5 10 syl2anc φFV
12 1 2 4 3 11 6 clim2f2 φFAAx+jZkjBBA<x
13 5 12 mpbid φAx+jZkjBBA<x
14 13 simprd φx+jZkjBBA<x
15 breq2 x=XBA<xBA<X
16 15 anbi2d x=XBBA<xBBA<X
17 16 ralbidv x=XkjBBA<xkjBBA<X
18 17 rexbidv x=XjZkjBBA<xjZkjBBA<X
19 18 rspcva X+x+jZkjBBA<xjZkjBBA<X
20 7 14 19 syl2anc φjZkjBBA<X