Metamath Proof Explorer


Theorem clm0vs

Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( lmod0vs analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0vs.v V=BaseW
clm0vs.f F=ScalarW
clm0vs.s ·˙=W
clm0vs.z 0˙=0W
Assertion clm0vs WCModXV0·˙X=0˙

Proof

Step Hyp Ref Expression
1 clm0vs.v V=BaseW
2 clm0vs.f F=ScalarW
3 clm0vs.s ·˙=W
4 clm0vs.z 0˙=0W
5 2 clm0 WCMod0=0F
6 5 adantr WCModXV0=0F
7 6 oveq1d WCModXV0·˙X=0F·˙X
8 clmlmod WCModWLMod
9 eqid 0F=0F
10 1 2 3 9 4 lmod0vs WLModXV0F·˙X=0˙
11 8 10 sylan WCModXV0F·˙X=0˙
12 7 11 eqtrd WCModXV0·˙X=0˙