Metamath Proof Explorer


Theorem clmsub

Description: Subtraction in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F=ScalarW
clmsub.k K=BaseF
Assertion clmsub WCModAKBKAB=A-FB

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 clmsub.k K=BaseF
3 1 2 clmsubrg WCModKSubRingfld
4 subrgsubg KSubRingfldKSubGrpfld
5 3 4 syl WCModKSubGrpfld
6 cnfldsub =-fld
7 eqid fld𝑠K=fld𝑠K
8 eqid -fld𝑠K=-fld𝑠K
9 6 7 8 subgsub KSubGrpfldAKBKAB=A-fld𝑠KB
10 5 9 syl3an1 WCModAKBKAB=A-fld𝑠KB
11 1 2 clmsca WCModF=fld𝑠K
12 11 fveq2d WCMod-F=-fld𝑠K
13 12 3ad2ant1 WCModAKBK-F=-fld𝑠K
14 13 oveqd WCModAKBKA-FB=A-fld𝑠KB
15 10 14 eqtr4d WCModAKBKAB=A-FB