Description: Subtraction in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clm0.f | |
|
clmsub.k | |
||
Assertion | clmsub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | |
|
2 | clmsub.k | |
|
3 | 1 2 | clmsubrg | |
4 | subrgsubg | |
|
5 | 3 4 | syl | |
6 | cnfldsub | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 6 7 8 | subgsub | |
10 | 5 9 | syl3an1 | |
11 | 1 2 | clmsca | |
12 | 11 | fveq2d | |
13 | 12 | 3ad2ant1 | |
14 | 13 | oveqd | |
15 | 10 14 | eqtr4d | |