Metamath Proof Explorer


Theorem clmvscom

Description: Commutative law for the scalar product. (Contributed by NM, 14-Feb-2008) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses clmvscl.v V=BaseW
clmvscl.f F=ScalarW
clmvscl.s ·˙=W
clmvscl.k K=BaseF
Assertion clmvscom WCModQKRKXVQ·˙R·˙X=R·˙Q·˙X

Proof

Step Hyp Ref Expression
1 clmvscl.v V=BaseW
2 clmvscl.f F=ScalarW
3 clmvscl.s ·˙=W
4 clmvscl.k K=BaseF
5 ssel KQKQ
6 ssel KRKR
7 5 6 anim12d KQKRKQR
8 2 4 clmsscn WCModK
9 7 8 syl11 QKRKWCModQR
10 9 3adant3 QKRKXVWCModQR
11 10 impcom WCModQKRKXVQR
12 mulcom QRQR=RQ
13 11 12 syl WCModQKRKXVQR=RQ
14 13 oveq1d WCModQKRKXVQR·˙X=RQ·˙X
15 1 2 3 4 clmvsass WCModQKRKXVQR·˙X=Q·˙R·˙X
16 3ancoma QKRKXVRKQKXV
17 1 2 3 4 clmvsass WCModRKQKXVRQ·˙X=R·˙Q·˙X
18 16 17 sylan2b WCModQKRKXVRQ·˙X=R·˙Q·˙X
19 14 15 18 3eqtr3d WCModQKRKXVQ·˙R·˙X=R·˙Q·˙X