Metamath Proof Explorer


Theorem clmvz

Description: Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses clmvz.v V=BaseW
clmvz.m -˙=-W
clmvz.s ·˙=W
clmvz.0 0˙=0W
Assertion clmvz WCModAV0˙-˙A=-1·˙A

Proof

Step Hyp Ref Expression
1 clmvz.v V=BaseW
2 clmvz.m -˙=-W
3 clmvz.s ·˙=W
4 clmvz.0 0˙=0W
5 simpl WCModAVWCMod
6 clmgrp WCModWGrp
7 1 4 grpidcl WGrp0˙V
8 6 7 syl WCMod0˙V
9 8 adantr WCModAV0˙V
10 simpr WCModAVAV
11 eqid +W=+W
12 eqid ScalarW=ScalarW
13 1 11 2 12 3 clmvsubval2 WCMod0˙VAV0˙-˙A=-1·˙A+W0˙
14 5 9 10 13 syl3anc WCModAV0˙-˙A=-1·˙A+W0˙
15 eqid BaseScalarW=BaseScalarW
16 12 15 clmneg1 WCMod1BaseScalarW
17 16 adantr WCModAV1BaseScalarW
18 1 12 3 15 clmvscl WCMod1BaseScalarWAV-1·˙AV
19 5 17 10 18 syl3anc WCModAV-1·˙AV
20 1 11 4 grprid WGrp-1·˙AV-1·˙A+W0˙=-1·˙A
21 6 19 20 syl2an2r WCModAV-1·˙A+W0˙=-1·˙A
22 14 21 eqtrd WCModAV0˙-˙A=-1·˙A