Metamath Proof Explorer


Theorem clsfval

Description: The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis cldval.1 X=J
Assertion clsfval JTopclsJ=x𝒫XyClsdJ|xy

Proof

Step Hyp Ref Expression
1 cldval.1 X=J
2 1 topopn JTopXJ
3 pwexg XJ𝒫XV
4 mptexg 𝒫XVx𝒫XyClsdJ|xyV
5 2 3 4 3syl JTopx𝒫XyClsdJ|xyV
6 unieq j=Jj=J
7 6 1 eqtr4di j=Jj=X
8 7 pweqd j=J𝒫j=𝒫X
9 fveq2 j=JClsdj=ClsdJ
10 9 rabeqdv j=JyClsdj|xy=yClsdJ|xy
11 10 inteqd j=JyClsdj|xy=yClsdJ|xy
12 8 11 mpteq12dv j=Jx𝒫jyClsdj|xy=x𝒫XyClsdJ|xy
13 df-cls cls=jTopx𝒫jyClsdj|xy
14 12 13 fvmptg JTopx𝒫XyClsdJ|xyVclsJ=x𝒫XyClsdJ|xy
15 5 14 mpdan JTopclsJ=x𝒫XyClsdJ|xy