Metamath Proof Explorer


Theorem clsint2

Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clsint2.1 X=J
Assertion clsint2 JTopC𝒫XclsJCcCclsJc

Proof

Step Hyp Ref Expression
1 clsint2.1 X=J
2 sspwuni C𝒫XCX
3 elssuni cCcC
4 sstr2 cCCXcX
5 3 4 syl cCCXcX
6 5 adantl JTopcCCXcX
7 intss1 cCCc
8 1 clsss JTopcXCcclsJCclsJc
9 7 8 syl3an3 JTopcXcCclsJCclsJc
10 9 3com23 JTopcCcXclsJCclsJc
11 10 3expia JTopcCcXclsJCclsJc
12 6 11 syld JTopcCCXclsJCclsJc
13 12 impancom JTopCXcCclsJCclsJc
14 2 13 sylan2b JTopC𝒫XcCclsJCclsJc
15 14 ralrimiv JTopC𝒫XcCclsJCclsJc
16 ssiin clsJCcCclsJccCclsJCclsJc
17 15 16 sylibr JTopC𝒫XclsJCcCclsJc