Metamath Proof Explorer


Theorem clsk1indlem2

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k K = r 𝒫 3 𝑜 if r = 1 𝑜 r
Assertion clsk1indlem2 s 𝒫 3 𝑜 s K s

Proof

Step Hyp Ref Expression
1 clsk1indlem.k K = r 𝒫 3 𝑜 if r = 1 𝑜 r
2 id s = s =
3 snsspr1 1 𝑜
4 2 3 eqsstrdi s = s 1 𝑜
5 4 ancli s = s = s 1 𝑜
6 5 con3i ¬ s = s 1 𝑜 ¬ s =
7 ssid s s
8 6 7 jctir ¬ s = s 1 𝑜 ¬ s = s s
9 8 orri s = s 1 𝑜 ¬ s = s s
10 9 a1i s 𝒫 3 𝑜 s = s 1 𝑜 ¬ s = s s
11 sseq2 if s = 1 𝑜 s = 1 𝑜 s if s = 1 𝑜 s s 1 𝑜
12 sseq2 if s = 1 𝑜 s = s s if s = 1 𝑜 s s s
13 11 12 elimif s if s = 1 𝑜 s s = s 1 𝑜 ¬ s = s s
14 10 13 sylibr s 𝒫 3 𝑜 s if s = 1 𝑜 s
15 eqeq1 r = s r = s =
16 id r = s r = s
17 15 16 ifbieq2d r = s if r = 1 𝑜 r = if s = 1 𝑜 s
18 prex 1 𝑜 V
19 vex s V
20 18 19 ifex if s = 1 𝑜 s V
21 17 1 20 fvmpt s 𝒫 3 𝑜 K s = if s = 1 𝑜 s
22 14 21 sseqtrrd s 𝒫 3 𝑜 s K s
23 22 rgen s 𝒫 3 𝑜 s K s