Metamath Proof Explorer


Theorem clsneif1o

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021)

Ref Expression
Hypotheses clsnei.o O=iV,jVk𝒫jiljmi|lkm
clsnei.p P=nVp𝒫n𝒫no𝒫nnpno
clsnei.d D=PB
clsnei.f F=𝒫BOB
clsnei.h H=FD
clsnei.r φKHN
Assertion clsneif1o φH:𝒫B𝒫B1-1 onto𝒫𝒫BB

Proof

Step Hyp Ref Expression
1 clsnei.o O=iV,jVk𝒫jiljmi|lkm
2 clsnei.p P=nVp𝒫n𝒫no𝒫nnpno
3 clsnei.d D=PB
4 clsnei.f F=𝒫BOB
5 clsnei.h H=FD
6 clsnei.r φKHN
7 3 5 6 clsneibex φBV
8 pwexg BV𝒫BV
9 8 adantl φBV𝒫BV
10 simpr φBVBV
11 eqid 𝒫BOB=𝒫BOB
12 1 9 10 11 fsovf1od φBV𝒫BOB:𝒫B𝒫B1-1 onto𝒫𝒫BB
13 eqid PB=PB
14 2 13 10 dssmapf1od φBVPB:𝒫B𝒫B1-1 onto𝒫B𝒫B
15 f1oco 𝒫BOB:𝒫B𝒫B1-1 onto𝒫𝒫BBPB:𝒫B𝒫B1-1 onto𝒫B𝒫B𝒫BOBPB:𝒫B𝒫B1-1 onto𝒫𝒫BB
16 12 14 15 syl2anc φBV𝒫BOBPB:𝒫B𝒫B1-1 onto𝒫𝒫BB
17 7 16 mpdan φ𝒫BOBPB:𝒫B𝒫B1-1 onto𝒫𝒫BB
18 4 3 coeq12i FD=𝒫BOBPB
19 5 18 eqtri H=𝒫BOBPB
20 f1oeq1 H=𝒫BOBPBH:𝒫B𝒫B1-1 onto𝒫𝒫BB𝒫BOBPB:𝒫B𝒫B1-1 onto𝒫𝒫BB
21 19 20 ax-mp H:𝒫B𝒫B1-1 onto𝒫𝒫BB𝒫BOBPB:𝒫B𝒫B1-1 onto𝒫𝒫BB
22 17 21 sylibr φH:𝒫B𝒫B1-1 onto𝒫𝒫BB