Metamath Proof Explorer


Theorem clwwlkn

Description: The set of closed walks of a fixed length N as words over the set of vertices in a graph G . (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021) (Revised by AV, 22-Mar-2022)

Ref Expression
Assertion clwwlkn NClWWalksNG=wClWWalksG|w=N

Proof

Step Hyp Ref Expression
1 fveq2 g=GClWWalksg=ClWWalksG
2 1 adantl n=Ng=GClWWalksg=ClWWalksG
3 eqeq2 n=Nw=nw=N
4 3 adantr n=Ng=Gw=nw=N
5 2 4 rabeqbidv n=Ng=GwClWWalksg|w=n=wClWWalksG|w=N
6 df-clwwlkn ClWWalksN=n0,gVwClWWalksg|w=n
7 fvex ClWWalksGV
8 7 rabex wClWWalksG|w=NV
9 5 6 8 ovmpoa N0GVNClWWalksNG=wClWWalksG|w=N
10 6 mpondm0 ¬N0GVNClWWalksNG=
11 eqid VtxG=VtxG
12 11 clwwlkbp wClWWalksGGVwWordVtxGw
13 12 simp2d wClWWalksGwWordVtxG
14 lencl wWordVtxGw0
15 13 14 syl wClWWalksGw0
16 eleq1 w=Nw0N0
17 15 16 syl5ibcom wClWWalksGw=NN0
18 17 con3rr3 ¬N0wClWWalksG¬w=N
19 18 ralrimiv ¬N0wClWWalksG¬w=N
20 ral0 w¬w=N
21 fvprc ¬GVClWWalksG=
22 21 raleqdv ¬GVwClWWalksG¬w=Nw¬w=N
23 20 22 mpbiri ¬GVwClWWalksG¬w=N
24 19 23 jaoi ¬N0¬GVwClWWalksG¬w=N
25 ianor ¬N0GV¬N0¬GV
26 rabeq0 wClWWalksG|w=N=wClWWalksG¬w=N
27 24 25 26 3imtr4i ¬N0GVwClWWalksG|w=N=
28 10 27 eqtr4d ¬N0GVNClWWalksNG=wClWWalksG|w=N
29 9 28 pm2.61i NClWWalksNG=wClWWalksG|w=N