Metamath Proof Explorer


Theorem clwwlknccat

Description: The concatenation of two words representing closed walks anchored at the same vertex represents a closed walk with a length which is the sum of the lengths of the two walks. The resulting walk is a "double loop", starting at the common vertex, coming back to the common vertex by the first walk, following the second walk and finally coming back to the common vertex again. (Contributed by AV, 24-Apr-2022)

Ref Expression
Assertion clwwlknccat AMClWWalksNGBNClWWalksNGA0=B0A++BM+NClWWalksNG

Proof

Step Hyp Ref Expression
1 isclwwlkn AMClWWalksNGAClWWalksGA=M
2 isclwwlkn BNClWWalksNGBClWWalksGB=N
3 biid A0=B0A0=B0
4 simpl AClWWalksGA=MAClWWalksG
5 simpl BClWWalksGB=NBClWWalksG
6 id A0=B0A0=B0
7 clwwlkccat AClWWalksGBClWWalksGA0=B0A++BClWWalksG
8 4 5 6 7 syl3an AClWWalksGA=MBClWWalksGB=NA0=B0A++BClWWalksG
9 1 2 3 8 syl3anb AMClWWalksNGBNClWWalksNGA0=B0A++BClWWalksG
10 eqid VtxG=VtxG
11 10 clwwlknwrd AMClWWalksNGAWordVtxG
12 10 clwwlknwrd BNClWWalksNGBWordVtxG
13 ccatlen AWordVtxGBWordVtxGA++B=A+B
14 11 12 13 syl2an AMClWWalksNGBNClWWalksNGA++B=A+B
15 clwwlknlen AMClWWalksNGA=M
16 clwwlknlen BNClWWalksNGB=N
17 15 16 oveqan12d AMClWWalksNGBNClWWalksNGA+B=M+N
18 14 17 eqtrd AMClWWalksNGBNClWWalksNGA++B=M+N
19 18 3adant3 AMClWWalksNGBNClWWalksNGA0=B0A++B=M+N
20 isclwwlkn A++BM+NClWWalksNGA++BClWWalksGA++B=M+N
21 9 19 20 sylanbrc AMClWWalksNGBNClWWalksNGA0=B0A++BM+NClWWalksNG