Metamath Proof Explorer


Theorem clwwlknon

Description: The set of closed walks on vertex X of length N in a graph G as words over the set of vertices. (Contributed by Alexander van der Vekens, 14-Sep-2018) (Revised by AV, 28-May-2021) (Revised by AV, 24-Mar-2022)

Ref Expression
Assertion clwwlknon XClWWalksNOnGN=wNClWWalksNG|w0=X

Proof

Step Hyp Ref Expression
1 eqeq2 v=Xw0=vw0=X
2 1 rabbidv v=XwnClWWalksNG|w0=v=wnClWWalksNG|w0=X
3 oveq1 n=NnClWWalksNG=NClWWalksNG
4 3 rabeqdv n=NwnClWWalksNG|w0=X=wNClWWalksNG|w0=X
5 clwwlknonmpo ClWWalksNOnG=vVtxG,n0wnClWWalksNG|w0=v
6 ovex NClWWalksNGV
7 6 rabex wNClWWalksNG|w0=XV
8 2 4 5 7 ovmpo XVtxGN0XClWWalksNOnGN=wNClWWalksNG|w0=X
9 5 mpondm0 ¬XVtxGN0XClWWalksNOnGN=
10 isclwwlkn wNClWWalksNGwClWWalksGw=N
11 eqid VtxG=VtxG
12 11 clwwlkbp wClWWalksGGVwWordVtxGw
13 fstwrdne wWordVtxGww0VtxG
14 13 3adant1 GVwWordVtxGww0VtxG
15 12 14 syl wClWWalksGw0VtxG
16 15 adantr wClWWalksGw=Nw0VtxG
17 10 16 sylbi wNClWWalksNGw0VtxG
18 17 adantr wNClWWalksNGw0=Xw0VtxG
19 eleq1 w0=Xw0VtxGXVtxG
20 19 adantl wNClWWalksNGw0=Xw0VtxGXVtxG
21 18 20 mpbid wNClWWalksNGw0=XXVtxG
22 clwwlknnn wNClWWalksNGN
23 22 nnnn0d wNClWWalksNGN0
24 23 adantr wNClWWalksNGw0=XN0
25 21 24 jca wNClWWalksNGw0=XXVtxGN0
26 25 ex wNClWWalksNGw0=XXVtxGN0
27 26 con3rr3 ¬XVtxGN0wNClWWalksNG¬w0=X
28 27 ralrimiv ¬XVtxGN0wNClWWalksNG¬w0=X
29 rabeq0 wNClWWalksNG|w0=X=wNClWWalksNG¬w0=X
30 28 29 sylibr ¬XVtxGN0wNClWWalksNG|w0=X=
31 9 30 eqtr4d ¬XVtxGN0XClWWalksNOnGN=wNClWWalksNG|w0=X
32 8 31 pm2.61i XClWWalksNOnGN=wNClWWalksNG|w0=X