Metamath Proof Explorer


Theorem clwwlknon1le1

Description: There is at most one (closed) walk on vertex X of length 1 as word over the set of vertices. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Mar-2022)

Ref Expression
Assertion clwwlknon1le1 X ClWWalksNOn G 1 1

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid ClWWalksNOn G = ClWWalksNOn G
3 eqid Edg G = Edg G
4 1 2 3 clwwlknon1loop X Vtx G X Edg G X ClWWalksNOn G 1 = ⟨“ X ”⟩
5 fveq2 X ClWWalksNOn G 1 = ⟨“ X ”⟩ X ClWWalksNOn G 1 = ⟨“ X ”⟩
6 s1cli ⟨“ X ”⟩ Word V
7 hashsng ⟨“ X ”⟩ Word V ⟨“ X ”⟩ = 1
8 6 7 ax-mp ⟨“ X ”⟩ = 1
9 5 8 eqtrdi X ClWWalksNOn G 1 = ⟨“ X ”⟩ X ClWWalksNOn G 1 = 1
10 1le1 1 1
11 9 10 eqbrtrdi X ClWWalksNOn G 1 = ⟨“ X ”⟩ X ClWWalksNOn G 1 1
12 4 11 syl X Vtx G X Edg G X ClWWalksNOn G 1 1
13 1 2 3 clwwlknon1nloop X Edg G X ClWWalksNOn G 1 =
14 13 adantl X Vtx G X Edg G X ClWWalksNOn G 1 =
15 fveq2 X ClWWalksNOn G 1 = X ClWWalksNOn G 1 =
16 hash0 = 0
17 15 16 eqtrdi X ClWWalksNOn G 1 = X ClWWalksNOn G 1 = 0
18 0le1 0 1
19 17 18 eqbrtrdi X ClWWalksNOn G 1 = X ClWWalksNOn G 1 1
20 14 19 syl X Vtx G X Edg G X ClWWalksNOn G 1 1
21 12 20 pm2.61danel X Vtx G X ClWWalksNOn G 1 1
22 id ¬ X Vtx G ¬ X Vtx G
23 22 intnanrd ¬ X Vtx G ¬ X Vtx G 1
24 clwwlknon0 ¬ X Vtx G 1 X ClWWalksNOn G 1 =
25 23 24 syl ¬ X Vtx G X ClWWalksNOn G 1 =
26 25 fveq2d ¬ X Vtx G X ClWWalksNOn G 1 =
27 26 16 eqtrdi ¬ X Vtx G X ClWWalksNOn G 1 = 0
28 27 18 eqbrtrdi ¬ X Vtx G X ClWWalksNOn G 1 1
29 21 28 pm2.61i X ClWWalksNOn G 1 1