Metamath Proof Explorer


Theorem clwwlknon1le1

Description: There is at most one (closed) walk on vertex X of length 1 as word over the set of vertices. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Mar-2022)

Ref Expression
Assertion clwwlknon1le1 XClWWalksNOnG11

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid ClWWalksNOnG=ClWWalksNOnG
3 eqid EdgG=EdgG
4 1 2 3 clwwlknon1loop XVtxGXEdgGXClWWalksNOnG1=⟨“X”⟩
5 fveq2 XClWWalksNOnG1=⟨“X”⟩XClWWalksNOnG1=⟨“X”⟩
6 s1cli ⟨“X”⟩WordV
7 hashsng ⟨“X”⟩WordV⟨“X”⟩=1
8 6 7 ax-mp ⟨“X”⟩=1
9 5 8 eqtrdi XClWWalksNOnG1=⟨“X”⟩XClWWalksNOnG1=1
10 1le1 11
11 9 10 eqbrtrdi XClWWalksNOnG1=⟨“X”⟩XClWWalksNOnG11
12 4 11 syl XVtxGXEdgGXClWWalksNOnG11
13 1 2 3 clwwlknon1nloop XEdgGXClWWalksNOnG1=
14 13 adantl XVtxGXEdgGXClWWalksNOnG1=
15 fveq2 XClWWalksNOnG1=XClWWalksNOnG1=
16 hash0 =0
17 15 16 eqtrdi XClWWalksNOnG1=XClWWalksNOnG1=0
18 0le1 01
19 17 18 eqbrtrdi XClWWalksNOnG1=XClWWalksNOnG11
20 14 19 syl XVtxGXEdgGXClWWalksNOnG11
21 12 20 pm2.61danel XVtxGXClWWalksNOnG11
22 id ¬XVtxG¬XVtxG
23 22 intnanrd ¬XVtxG¬XVtxG1
24 clwwlknon0 ¬XVtxG1XClWWalksNOnG1=
25 23 24 syl ¬XVtxGXClWWalksNOnG1=
26 25 fveq2d ¬XVtxGXClWWalksNOnG1=
27 26 16 eqtrdi ¬XVtxGXClWWalksNOnG1=0
28 27 18 eqbrtrdi ¬XVtxGXClWWalksNOnG11
29 21 28 pm2.61i XClWWalksNOnG11