Metamath Proof Explorer


Theorem cmncom

Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses ablcom.b B=BaseG
ablcom.p +˙=+G
Assertion cmncom GCMndXBYBX+˙Y=Y+˙X

Proof

Step Hyp Ref Expression
1 ablcom.b B=BaseG
2 ablcom.p +˙=+G
3 1 2 iscmn GCMndGMndxByBx+˙y=y+˙x
4 3 simprbi GCMndxByBx+˙y=y+˙x
5 rsp2 xByBx+˙y=y+˙xxByBx+˙y=y+˙x
6 5 imp xByBx+˙y=y+˙xxByBx+˙y=y+˙x
7 4 6 sylan GCMndxByBx+˙y=y+˙x
8 7 caovcomg GCMndXBYBX+˙Y=Y+˙X
9 8 3impb GCMndXBYBX+˙Y=Y+˙X