Metamath Proof Explorer


Theorem cmtfvalN

Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtfval.b B=BaseK
cmtfval.j ˙=joinK
cmtfval.m ˙=meetK
cmtfval.o ˙=ocK
cmtfval.c C=cmK
Assertion cmtfvalN KAC=xy|xByBx=x˙y˙x˙˙y

Proof

Step Hyp Ref Expression
1 cmtfval.b B=BaseK
2 cmtfval.j ˙=joinK
3 cmtfval.m ˙=meetK
4 cmtfval.o ˙=ocK
5 cmtfval.c C=cmK
6 elex KAKV
7 fveq2 p=KBasep=BaseK
8 7 1 eqtr4di p=KBasep=B
9 8 eleq2d p=KxBasepxB
10 8 eleq2d p=KyBasepyB
11 fveq2 p=Kjoinp=joinK
12 11 2 eqtr4di p=Kjoinp=˙
13 fveq2 p=Kmeetp=meetK
14 13 3 eqtr4di p=Kmeetp=˙
15 14 oveqd p=Kxmeetpy=x˙y
16 eqidd p=Kx=x
17 fveq2 p=Kocp=ocK
18 17 4 eqtr4di p=Kocp=˙
19 18 fveq1d p=Kocpy=˙y
20 14 16 19 oveq123d p=Kxmeetpocpy=x˙˙y
21 12 15 20 oveq123d p=Kxmeetpyjoinpxmeetpocpy=x˙y˙x˙˙y
22 21 eqeq2d p=Kx=xmeetpyjoinpxmeetpocpyx=x˙y˙x˙˙y
23 9 10 22 3anbi123d p=KxBasepyBasepx=xmeetpyjoinpxmeetpocpyxByBx=x˙y˙x˙˙y
24 23 opabbidv p=Kxy|xBasepyBasepx=xmeetpyjoinpxmeetpocpy=xy|xByBx=x˙y˙x˙˙y
25 df-cmtN cm=pVxy|xBasepyBasepx=xmeetpyjoinpxmeetpocpy
26 df-3an xByBx=x˙y˙x˙˙yxByBx=x˙y˙x˙˙y
27 26 opabbii xy|xByBx=x˙y˙x˙˙y=xy|xByBx=x˙y˙x˙˙y
28 1 fvexi BV
29 28 28 xpex B×BV
30 opabssxp xy|xByBx=x˙y˙x˙˙yB×B
31 29 30 ssexi xy|xByBx=x˙y˙x˙˙yV
32 27 31 eqeltri xy|xByBx=x˙y˙x˙˙yV
33 24 25 32 fvmpt KVcmK=xy|xByBx=x˙y˙x˙˙y
34 5 33 eqtrid KVC=xy|xByBx=x˙y˙x˙˙y
35 6 34 syl KAC=xy|xByBx=x˙y˙x˙˙y