Metamath Proof Explorer


Theorem cncfval

Description: The value of the continuous complex function operation is the set of continuous functions from A to B . (Contributed by Paul Chapman, 11-Oct-2007) (Revised by Mario Carneiro, 9-Nov-2013)

Ref Expression
Assertion cncfval ABAcnB=fBA|xAy+z+wAxw<zfxfw<y

Proof

Step Hyp Ref Expression
1 cnex V
2 1 elpw2 A𝒫A
3 1 elpw2 B𝒫B
4 oveq2 a=Aba=bA
5 raleq a=Awaxw<zfxfw<ywAxw<zfxfw<y
6 5 rexbidv a=Az+waxw<zfxfw<yz+wAxw<zfxfw<y
7 6 ralbidv a=Ay+z+waxw<zfxfw<yy+z+wAxw<zfxfw<y
8 7 raleqbi1dv a=Axay+z+waxw<zfxfw<yxAy+z+wAxw<zfxfw<y
9 4 8 rabeqbidv a=Afba|xay+z+waxw<zfxfw<y=fbA|xAy+z+wAxw<zfxfw<y
10 oveq1 b=BbA=BA
11 10 rabeqdv b=BfbA|xAy+z+wAxw<zfxfw<y=fBA|xAy+z+wAxw<zfxfw<y
12 df-cncf cn=a𝒫,b𝒫fba|xay+z+waxw<zfxfw<y
13 ovex BAV
14 13 rabex fBA|xAy+z+wAxw<zfxfw<yV
15 9 11 12 14 ovmpo A𝒫B𝒫AcnB=fBA|xAy+z+wAxw<zfxfw<y
16 2 3 15 syl2anbr ABAcnB=fBA|xAy+z+wAxw<zfxfw<y