Metamath Proof Explorer


Theorem cnclima

Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnclima FJCnKAClsdKF-1AClsdJ

Proof

Step Hyp Ref Expression
1 eqid J=J
2 eqid K=K
3 1 2 cnf FJCnKF:JK
4 3 adantr FJCnKAClsdKF:JK
5 ffun F:JKFunF
6 funcnvcnv FunFFunF-1-1
7 imadif FunF-1-1F-1KA=F-1KF-1A
8 5 6 7 3syl F:JKF-1KA=F-1KF-1A
9 fimacnv F:JKF-1K=J
10 9 difeq1d F:JKF-1KF-1A=JF-1A
11 8 10 eqtr2d F:JKJF-1A=F-1KA
12 4 11 syl FJCnKAClsdKJF-1A=F-1KA
13 2 cldopn AClsdKKAK
14 cnima FJCnKKAKF-1KAJ
15 13 14 sylan2 FJCnKAClsdKF-1KAJ
16 12 15 eqeltrd FJCnKAClsdKJF-1AJ
17 cntop1 FJCnKJTop
18 cnvimass F-1AdomF
19 18 4 fssdm FJCnKAClsdKF-1AJ
20 1 iscld2 JTopF-1AJF-1AClsdJJF-1AJ
21 17 19 20 syl2an2r FJCnKAClsdKF-1AClsdJJF-1AJ
22 16 21 mpbird FJCnKAClsdKF-1AClsdJ