Metamath Proof Explorer


Theorem iscncl

Description: A characterization of a continuity function using closed sets. Theorem 1(d) of BourbakiTop1 p. I.9. (Contributed by FL, 19-Nov-2006) (Proof shortened by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion iscncl JTopOnXKTopOnYFJCnKF:XYyClsdKF-1yClsdJ

Proof

Step Hyp Ref Expression
1 cnf2 JTopOnXKTopOnYFJCnKF:XY
2 1 3expa JTopOnXKTopOnYFJCnKF:XY
3 cnclima FJCnKyClsdKF-1yClsdJ
4 3 ralrimiva FJCnKyClsdKF-1yClsdJ
5 4 adantl JTopOnXKTopOnYFJCnKyClsdKF-1yClsdJ
6 2 5 jca JTopOnXKTopOnYFJCnKF:XYyClsdKF-1yClsdJ
7 simprl JTopOnXKTopOnYF:XYyClsdKF-1yClsdJF:XY
8 toponuni JTopOnXX=J
9 8 ad3antrrr JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKX=J
10 simplrl JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKF:XY
11 fimacnv F:XYF-1Y=X
12 11 eqcomd F:XYX=F-1Y
13 10 12 syl JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKX=F-1Y
14 9 13 eqtr3d JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKJ=F-1Y
15 14 difeq1d JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKJF-1x=F-1YF-1x
16 ffun F:XYFunF
17 funcnvcnv FunFFunF-1-1
18 imadif FunF-1-1F-1Yx=F-1YF-1x
19 10 16 17 18 4syl JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKF-1Yx=F-1YF-1x
20 15 19 eqtr4d JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKJF-1x=F-1Yx
21 imaeq2 y=YxF-1y=F-1Yx
22 21 eleq1d y=YxF-1yClsdJF-1YxClsdJ
23 simplrr JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKyClsdKF-1yClsdJ
24 toponuni KTopOnYY=K
25 24 ad3antlr JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKY=K
26 25 difeq1d JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKYx=Kx
27 topontop KTopOnYKTop
28 27 ad3antlr JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKKTop
29 eqid K=K
30 29 opncld KTopxKKxClsdK
31 28 30 sylancom JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKKxClsdK
32 26 31 eqeltrd JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKYxClsdK
33 22 23 32 rspcdva JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKF-1YxClsdJ
34 20 33 eqeltrd JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKJF-1xClsdJ
35 topontop JTopOnXJTop
36 35 ad3antrrr JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKJTop
37 cnvimass F-1xdomF
38 37 10 fssdm JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKF-1xX
39 38 9 sseqtrd JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKF-1xJ
40 eqid J=J
41 40 isopn2 JTopF-1xJF-1xJJF-1xClsdJ
42 36 39 41 syl2anc JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKF-1xJJF-1xClsdJ
43 34 42 mpbird JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKF-1xJ
44 43 ralrimiva JTopOnXKTopOnYF:XYyClsdKF-1yClsdJxKF-1xJ
45 iscn JTopOnXKTopOnYFJCnKF:XYxKF-1xJ
46 45 adantr JTopOnXKTopOnYF:XYyClsdKF-1yClsdJFJCnKF:XYxKF-1xJ
47 7 44 46 mpbir2and JTopOnXKTopOnYF:XYyClsdKF-1yClsdJFJCnK
48 6 47 impbida JTopOnXKTopOnYFJCnKF:XYyClsdKF-1yClsdJ