Description: A characterization of a continuity function using closed sets. Theorem 1(d) of BourbakiTop1 p. I.9. (Contributed by FL, 19-Nov-2006) (Proof shortened by Mario Carneiro, 21-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iscncl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnf2 | |
|
2 | 1 | 3expa | |
3 | cnclima | |
|
4 | 3 | ralrimiva | |
5 | 4 | adantl | |
6 | 2 5 | jca | |
7 | simprl | |
|
8 | toponuni | |
|
9 | 8 | ad3antrrr | |
10 | simplrl | |
|
11 | fimacnv | |
|
12 | 11 | eqcomd | |
13 | 10 12 | syl | |
14 | 9 13 | eqtr3d | |
15 | 14 | difeq1d | |
16 | ffun | |
|
17 | funcnvcnv | |
|
18 | imadif | |
|
19 | 10 16 17 18 | 4syl | |
20 | 15 19 | eqtr4d | |
21 | imaeq2 | |
|
22 | 21 | eleq1d | |
23 | simplrr | |
|
24 | toponuni | |
|
25 | 24 | ad3antlr | |
26 | 25 | difeq1d | |
27 | topontop | |
|
28 | 27 | ad3antlr | |
29 | eqid | |
|
30 | 29 | opncld | |
31 | 28 30 | sylancom | |
32 | 26 31 | eqeltrd | |
33 | 22 23 32 | rspcdva | |
34 | 20 33 | eqeltrd | |
35 | topontop | |
|
36 | 35 | ad3antrrr | |
37 | cnvimass | |
|
38 | 37 10 | fssdm | |
39 | 38 9 | sseqtrd | |
40 | eqid | |
|
41 | 40 | isopn2 | |
42 | 36 39 41 | syl2anc | |
43 | 34 42 | mpbird | |
44 | 43 | ralrimiva | |
45 | iscn | |
|
46 | 45 | adantr | |
47 | 7 44 46 | mpbir2and | |
48 | 6 47 | impbida | |