Metamath Proof Explorer


Theorem cnflduss

Description: The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Hypothesis cnflduss.1 U=UnifStfld
Assertion cnflduss U=metUnifabs

Proof

Step Hyp Ref Expression
1 cnflduss.1 U=UnifStfld
2 0cn 0
3 2 ne0ii
4 cnxmet abs∞Met
5 xmetpsmet abs∞MetabsPsMet
6 4 5 ax-mp absPsMet
7 metuust absPsMetmetUnifabsUnifOn
8 3 6 7 mp2an metUnifabsUnifOn
9 ustuni metUnifabsUnifOnmetUnifabs=×
10 8 9 ax-mp metUnifabs=×
11 10 eqcomi ×=metUnifabs
12 cnfldbas =Basefld
13 cnfldunif metUnifabs=UnifSetfld
14 12 13 ussid ×=metUnifabsmetUnifabs=UnifStfld
15 11 14 ax-mp metUnifabs=UnifStfld
16 1 15 eqtr4i U=metUnifabs