Metamath Proof Explorer


Theorem cnioobibld

Description: A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider F = ( x e. ( 0 (,) 1 ) |-> ( 1 / x ) ) . See cniccibl for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019)

Ref Expression
Hypotheses cnioobibld.1 φ A
cnioobibld.2 φ B
cnioobibld.3 φ F : A B cn
cnioobibld.4 φ x y dom F F y x
Assertion cnioobibld φ F 𝐿 1

Proof

Step Hyp Ref Expression
1 cnioobibld.1 φ A
2 cnioobibld.2 φ B
3 cnioobibld.3 φ F : A B cn
4 cnioobibld.4 φ x y dom F F y x
5 ioombl A B dom vol
6 cnmbf A B dom vol F : A B cn F MblFn
7 5 3 6 sylancr φ F MblFn
8 cncff F : A B cn F : A B
9 fdm F : A B dom F = A B
10 3 8 9 3syl φ dom F = A B
11 10 fveq2d φ vol dom F = vol A B
12 ioovolcl A B vol A B
13 1 2 12 syl2anc φ vol A B
14 11 13 eqeltrd φ vol dom F
15 bddibl F MblFn vol dom F x y dom F F y x F 𝐿 1
16 7 14 4 15 syl3anc φ F 𝐿 1