Metamath Proof Explorer


Theorem cnlimc

Description: F is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion cnlimc A F : A cn F : A x A F x F lim x

Proof

Step Hyp Ref Expression
1 ssid
2 eqid TopOpen fld = TopOpen fld
3 eqid TopOpen fld 𝑡 A = TopOpen fld 𝑡 A
4 2 cnfldtopon TopOpen fld TopOn
5 4 toponrestid TopOpen fld = TopOpen fld 𝑡
6 2 3 5 cncfcn A A cn = TopOpen fld 𝑡 A Cn TopOpen fld
7 1 6 mpan2 A A cn = TopOpen fld 𝑡 A Cn TopOpen fld
8 7 eleq2d A F : A cn F TopOpen fld 𝑡 A Cn TopOpen fld
9 resttopon TopOpen fld TopOn A TopOpen fld 𝑡 A TopOn A
10 4 9 mpan A TopOpen fld 𝑡 A TopOn A
11 cncnp TopOpen fld 𝑡 A TopOn A TopOpen fld TopOn F TopOpen fld 𝑡 A Cn TopOpen fld F : A x A F TopOpen fld 𝑡 A CnP TopOpen fld x
12 10 4 11 sylancl A F TopOpen fld 𝑡 A Cn TopOpen fld F : A x A F TopOpen fld 𝑡 A CnP TopOpen fld x
13 2 3 cnplimc A x A F TopOpen fld 𝑡 A CnP TopOpen fld x F : A F x F lim x
14 13 baibd A x A F : A F TopOpen fld 𝑡 A CnP TopOpen fld x F x F lim x
15 14 an32s A F : A x A F TopOpen fld 𝑡 A CnP TopOpen fld x F x F lim x
16 15 ralbidva A F : A x A F TopOpen fld 𝑡 A CnP TopOpen fld x x A F x F lim x
17 16 pm5.32da A F : A x A F TopOpen fld 𝑡 A CnP TopOpen fld x F : A x A F x F lim x
18 8 12 17 3bitrd A F : A cn F : A x A F x F lim x