Metamath Proof Explorer


Theorem cnlimc

Description: F is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion cnlimc AF:AcnF:AxAFxFlimx

Proof

Step Hyp Ref Expression
1 ssid
2 eqid TopOpenfld=TopOpenfld
3 eqid TopOpenfld𝑡A=TopOpenfld𝑡A
4 2 cnfldtopon TopOpenfldTopOn
5 4 toponrestid TopOpenfld=TopOpenfld𝑡
6 2 3 5 cncfcn AAcn=TopOpenfld𝑡ACnTopOpenfld
7 1 6 mpan2 AAcn=TopOpenfld𝑡ACnTopOpenfld
8 7 eleq2d AF:AcnFTopOpenfld𝑡ACnTopOpenfld
9 resttopon TopOpenfldTopOnATopOpenfld𝑡ATopOnA
10 4 9 mpan ATopOpenfld𝑡ATopOnA
11 cncnp TopOpenfld𝑡ATopOnATopOpenfldTopOnFTopOpenfld𝑡ACnTopOpenfldF:AxAFTopOpenfld𝑡ACnPTopOpenfldx
12 10 4 11 sylancl AFTopOpenfld𝑡ACnTopOpenfldF:AxAFTopOpenfld𝑡ACnPTopOpenfldx
13 2 3 cnplimc AxAFTopOpenfld𝑡ACnPTopOpenfldxF:AFxFlimx
14 13 baibd AxAF:AFTopOpenfld𝑡ACnPTopOpenfldxFxFlimx
15 14 an32s AF:AxAFTopOpenfld𝑡ACnPTopOpenfldxFxFlimx
16 15 ralbidva AF:AxAFTopOpenfld𝑡ACnPTopOpenfldxxAFxFlimx
17 16 pm5.32da AF:AxAFTopOpenfld𝑡ACnPTopOpenfldxF:AxAFxFlimx
18 8 12 17 3bitrd AF:AcnF:AxAFxFlimx