Metamath Proof Explorer


Theorem cnlnadjlem3

Description: Lemma for cnlnadji . By riesz4 , B is the unique vector such that ( Tv ) .ih y ) = ( v .ih w ) for all v . (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 TLinOp
cnlnadjlem.2 TContOp
cnlnadjlem.3 G=gTgihy
cnlnadjlem.4 B=ιw|vTvihy=vihw
Assertion cnlnadjlem3 yB

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 TLinOp
2 cnlnadjlem.2 TContOp
3 cnlnadjlem.3 G=gTgihy
4 cnlnadjlem.4 B=ιw|vTvihy=vihw
5 1 2 3 cnlnadjlem2 yGLinFnGContFn
6 elin GLinFnContFnGLinFnGContFn
7 5 6 sylibr yGLinFnContFn
8 riesz4 GLinFnContFn∃!wvGv=vihw
9 7 8 syl y∃!wvGv=vihw
10 1 2 3 cnlnadjlem1 vGv=Tvihy
11 10 eqeq1d vGv=vihwTvihy=vihw
12 11 ralbiia vGv=vihwvTvihy=vihw
13 12 reubii ∃!wvGv=vihw∃!wvTvihy=vihw
14 9 13 sylib y∃!wvTvihy=vihw
15 riotacl ∃!wvTvihy=vihwιw|vTvihy=vihw
16 14 15 syl yιw|vTvihy=vihw
17 4 16 eqeltrid yB