Metamath Proof Explorer


Theorem cnmpt1st

Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmpt21.j φJTopOnX
cnmpt21.k φKTopOnY
Assertion cnmpt1st φxX,yYxJ×tKCnJ

Proof

Step Hyp Ref Expression
1 cnmpt21.j φJTopOnX
2 cnmpt21.k φKTopOnY
3 fo1st 1st:VontoV
4 fofn 1st:VontoV1stFnV
5 3 4 ax-mp 1stFnV
6 ssv X×YV
7 fnssres 1stFnVX×YV1stX×YFnX×Y
8 5 6 7 mp2an 1stX×YFnX×Y
9 dffn5 1stX×YFnX×Y1stX×Y=zX×Y1stX×Yz
10 8 9 mpbi 1stX×Y=zX×Y1stX×Yz
11 fvres zX×Y1stX×Yz=1stz
12 11 mpteq2ia zX×Y1stX×Yz=zX×Y1stz
13 vex xV
14 vex yV
15 13 14 op1std z=xy1stz=x
16 15 mpompt zX×Y1stz=xX,yYx
17 10 12 16 3eqtri 1stX×Y=xX,yYx
18 tx1cn JTopOnXKTopOnY1stX×YJ×tKCnJ
19 1 2 18 syl2anc φ1stX×YJ×tKCnJ
20 17 19 eqeltrrid φxX,yYxJ×tKCnJ