Metamath Proof Explorer


Theorem cnnv

Description: The set of complex numbers is a normed complex vector space. The vector operation is + , the scalar product is x. , and the norm function is abs . (Contributed by Steve Rodriguez, 3-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypothesis cnnv.6 U=+×abs
Assertion cnnv UNrmCVec

Proof

Step Hyp Ref Expression
1 cnnv.6 U=+×abs
2 cnaddabloOLD +AbelOp
3 ablogrpo +AbelOp+GrpOp
4 2 3 ax-mp +GrpOp
5 ax-addf +:×
6 5 fdmi dom+=×
7 4 6 grporn =ran+
8 cnidOLD 0=GId+
9 cncvcOLD +×CVecOLD
10 absf abs:
11 abs00 xx=0x=0
12 11 biimpa xx=0x=0
13 absmul yxyx=yx
14 abstri xyx+yx+y
15 7 8 9 10 12 13 14 1 isnvi UNrmCVec