Description: If A is an isolated point in X (or equivalently, the singleton { A } is open in X ), then every function is continuous at A . (Contributed by Mario Carneiro, 9-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnpdis | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl | |
|
2 | simpll3 | |
|
3 | snidg | |
|
4 | 2 3 | syl | |
5 | simprr | |
|
6 | simplrr | |
|
7 | ffn | |
|
8 | elpreima | |
|
9 | 6 7 8 | 3syl | |
10 | 2 5 9 | mpbir2and | |
11 | 10 | snssd | |
12 | eleq2 | |
|
13 | sseq1 | |
|
14 | 12 13 | anbi12d | |
15 | 14 | rspcev | |
16 | 1 4 11 15 | syl12anc | |
17 | 16 | expr | |
18 | 17 | ralrimiva | |
19 | 18 | expr | |
20 | 19 | pm4.71d | |
21 | simpl2 | |
|
22 | toponmax | |
|
23 | 21 22 | syl | |
24 | simpl1 | |
|
25 | toponmax | |
|
26 | 24 25 | syl | |
27 | 23 26 | elmapd | |
28 | iscnp3 | |
|
29 | 28 | adantr | |
30 | 20 27 29 | 3bitr4rd | |
31 | 30 | eqrdv | |