Metamath Proof Explorer


Theorem cnpdis

Description: If A is an isolated point in X (or equivalently, the singleton { A } is open in X ), then every function is continuous at A . (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion cnpdis JTopOnXKTopOnYAXAJJCnPKA=YX

Proof

Step Hyp Ref Expression
1 simplrl JTopOnXKTopOnYAXAJf:XYxKfAxAJ
2 simpll3 JTopOnXKTopOnYAXAJf:XYxKfAxAX
3 snidg AXAA
4 2 3 syl JTopOnXKTopOnYAXAJf:XYxKfAxAA
5 simprr JTopOnXKTopOnYAXAJf:XYxKfAxfAx
6 simplrr JTopOnXKTopOnYAXAJf:XYxKfAxf:XY
7 ffn f:XYfFnX
8 elpreima fFnXAf-1xAXfAx
9 6 7 8 3syl JTopOnXKTopOnYAXAJf:XYxKfAxAf-1xAXfAx
10 2 5 9 mpbir2and JTopOnXKTopOnYAXAJf:XYxKfAxAf-1x
11 10 snssd JTopOnXKTopOnYAXAJf:XYxKfAxAf-1x
12 eleq2 y=AAyAA
13 sseq1 y=Ayf-1xAf-1x
14 12 13 anbi12d y=AAyyf-1xAAAf-1x
15 14 rspcev AJAAAf-1xyJAyyf-1x
16 1 4 11 15 syl12anc JTopOnXKTopOnYAXAJf:XYxKfAxyJAyyf-1x
17 16 expr JTopOnXKTopOnYAXAJf:XYxKfAxyJAyyf-1x
18 17 ralrimiva JTopOnXKTopOnYAXAJf:XYxKfAxyJAyyf-1x
19 18 expr JTopOnXKTopOnYAXAJf:XYxKfAxyJAyyf-1x
20 19 pm4.71d JTopOnXKTopOnYAXAJf:XYf:XYxKfAxyJAyyf-1x
21 simpl2 JTopOnXKTopOnYAXAJKTopOnY
22 toponmax KTopOnYYK
23 21 22 syl JTopOnXKTopOnYAXAJYK
24 simpl1 JTopOnXKTopOnYAXAJJTopOnX
25 toponmax JTopOnXXJ
26 24 25 syl JTopOnXKTopOnYAXAJXJ
27 23 26 elmapd JTopOnXKTopOnYAXAJfYXf:XY
28 iscnp3 JTopOnXKTopOnYAXfJCnPKAf:XYxKfAxyJAyyf-1x
29 28 adantr JTopOnXKTopOnYAXAJfJCnPKAf:XYxKfAxyJAyyf-1x
30 20 27 29 3bitr4rd JTopOnXKTopOnYAXAJfJCnPKAfYX
31 30 eqrdv JTopOnXKTopOnYAXAJJCnPKA=YX