Metamath Proof Explorer


Theorem cnpval

Description: The set of all functions from topology J to topology K that are continuous at a point P . (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Assertion cnpval JTopOnXKTopOnYPXJCnPKP=fYX|yKfPyxJPxfxy

Proof

Step Hyp Ref Expression
1 cnpfval JTopOnXKTopOnYJCnPK=vXfYX|yKfvyxJvxfxy
2 1 fveq1d JTopOnXKTopOnYJCnPKP=vXfYX|yKfvyxJvxfxyP
3 fveq2 v=Pfv=fP
4 3 eleq1d v=PfvyfPy
5 eleq1 v=PvxPx
6 5 anbi1d v=PvxfxyPxfxy
7 6 rexbidv v=PxJvxfxyxJPxfxy
8 4 7 imbi12d v=PfvyxJvxfxyfPyxJPxfxy
9 8 ralbidv v=PyKfvyxJvxfxyyKfPyxJPxfxy
10 9 rabbidv v=PfYX|yKfvyxJvxfxy=fYX|yKfPyxJPxfxy
11 eqid vXfYX|yKfvyxJvxfxy=vXfYX|yKfvyxJvxfxy
12 ovex YXV
13 12 rabex fYX|yKfPyxJPxfxyV
14 10 11 13 fvmpt PXvXfYX|yKfvyxJvxfxyP=fYX|yKfPyxJPxfxy
15 2 14 sylan9eq JTopOnXKTopOnYPXJCnPKP=fYX|yKfPyxJPxfxy
16 15 3impa JTopOnXKTopOnYPXJCnPKP=fYX|yKfPyxJPxfxy