Metamath Proof Explorer


Theorem cnres2

Description: The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypotheses cnres2.1 X=J
cnres2.2 Y=K
Assertion cnres2 JTopKTopAXBYFJCnKxAFxBFAJ𝑡ACnK𝑡B

Proof

Step Hyp Ref Expression
1 cnres2.1 X=J
2 cnres2.2 Y=K
3 simp3l JTopKTopAXBYFJCnKxAFxBFJCnK
4 simp2l JTopKTopAXBYFJCnKxAFxBAX
5 1 cnrest FJCnKAXFAJ𝑡ACnK
6 3 4 5 syl2anc JTopKTopAXBYFJCnKxAFxBFAJ𝑡ACnK
7 simp1r JTopKTopAXBYFJCnKxAFxBKTop
8 2 toptopon KTopKTopOnY
9 7 8 sylib JTopKTopAXBYFJCnKxAFxBKTopOnY
10 df-ima FA=ranFA
11 simp3r JTopKTopAXBYFJCnKxAFxBxAFxB
12 1 2 cnf FJCnKF:XY
13 ffun F:XYFunF
14 3 12 13 3syl JTopKTopAXBYFJCnKxAFxBFunF
15 fdm F:XYdomF=X
16 3 12 15 3syl JTopKTopAXBYFJCnKxAFxBdomF=X
17 4 16 sseqtrrd JTopKTopAXBYFJCnKxAFxBAdomF
18 funimass4 FunFAdomFFABxAFxB
19 14 17 18 syl2anc JTopKTopAXBYFJCnKxAFxBFABxAFxB
20 11 19 mpbird JTopKTopAXBYFJCnKxAFxBFAB
21 10 20 eqsstrrid JTopKTopAXBYFJCnKxAFxBranFAB
22 simp2r JTopKTopAXBYFJCnKxAFxBBY
23 cnrest2 KTopOnYranFABBYFAJ𝑡ACnKFAJ𝑡ACnK𝑡B
24 9 21 22 23 syl3anc JTopKTopAXBYFJCnKxAFxBFAJ𝑡ACnKFAJ𝑡ACnK𝑡B
25 6 24 mpbid JTopKTopAXBYFJCnKxAFxBFAJ𝑡ACnK𝑡B