Metamath Proof Explorer


Theorem cntrval2

Description: Express the center Z of a group M as the set of fixed points of the conjugation operation .(+) . (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses cntrval2.1 B = Base M
cntrval2.2 + ˙ = + M
cntrval2.3 - ˙ = - M
cntrval2.4 ˙ = x B , y B x + ˙ y - ˙ x
cntrval2.5 Z = Cntr M
Assertion cntrval2 Could not format assertion : No typesetting found for |- ( M e. Grp -> Z = ( B FixPts .(+) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 cntrval2.1 B = Base M
2 cntrval2.2 + ˙ = + M
3 cntrval2.3 - ˙ = - M
4 cntrval2.4 ˙ = x B , y B x + ˙ y - ˙ x
5 cntrval2.5 Z = Cntr M
6 simpll M Grp z B p B M Grp
7 simpr M Grp z B p B p B
8 simplr M Grp z B p B z B
9 1 2 6 7 8 grpcld M Grp z B p B p + ˙ z B
10 1 3 6 9 7 grpsubcld M Grp z B p B p + ˙ z - ˙ p B
11 1 2 grprcan M Grp p + ˙ z - ˙ p B z B p B p + ˙ z - ˙ p + ˙ p = z + ˙ p p + ˙ z - ˙ p = z
12 6 10 8 7 11 syl13anc M Grp z B p B p + ˙ z - ˙ p + ˙ p = z + ˙ p p + ˙ z - ˙ p = z
13 1 2 3 grpnpcan M Grp p + ˙ z B p B p + ˙ z - ˙ p + ˙ p = p + ˙ z
14 6 9 7 13 syl3anc M Grp z B p B p + ˙ z - ˙ p + ˙ p = p + ˙ z
15 14 eqeq2d M Grp z B p B z + ˙ p = p + ˙ z - ˙ p + ˙ p z + ˙ p = p + ˙ z
16 eqcom z + ˙ p = p + ˙ z - ˙ p + ˙ p p + ˙ z - ˙ p + ˙ p = z + ˙ p
17 15 16 bitr3di M Grp z B p B z + ˙ p = p + ˙ z p + ˙ z - ˙ p + ˙ p = z + ˙ p
18 4 a1i M Grp z B p B ˙ = x B , y B x + ˙ y - ˙ x
19 simprl M Grp z B p B x = p y = z x = p
20 simprr M Grp z B p B x = p y = z y = z
21 19 20 oveq12d M Grp z B p B x = p y = z x + ˙ y = p + ˙ z
22 21 19 oveq12d M Grp z B p B x = p y = z x + ˙ y - ˙ x = p + ˙ z - ˙ p
23 ovexd M Grp z B p B p + ˙ z - ˙ p V
24 18 22 7 8 23 ovmpod M Grp z B p B p ˙ z = p + ˙ z - ˙ p
25 24 eqeq1d M Grp z B p B p ˙ z = z p + ˙ z - ˙ p = z
26 12 17 25 3bitr4d M Grp z B p B z + ˙ p = p + ˙ z p ˙ z = z
27 26 ralbidva M Grp z B p B z + ˙ p = p + ˙ z p B p ˙ z = z
28 27 pm5.32da M Grp z B p B z + ˙ p = p + ˙ z z B p B p ˙ z = z
29 1 2 5 elcntr z Z z B p B z + ˙ p = p + ˙ z
30 rabid z z B | p B p ˙ z = z z B p B p ˙ z = z
31 28 29 30 3bitr4g M Grp z Z z z B | p B p ˙ z = z
32 1 2 3 4 conjga M Grp ˙ M GrpAct B
33 1 32 fxpgaval Could not format ( M e. Grp -> ( B FixPts .(+) ) = { z e. B | A. p e. B ( p .(+) z ) = z } ) : No typesetting found for |- ( M e. Grp -> ( B FixPts .(+) ) = { z e. B | A. p e. B ( p .(+) z ) = z } ) with typecode |-
34 33 eleq2d Could not format ( M e. Grp -> ( z e. ( B FixPts .(+) ) <-> z e. { z e. B | A. p e. B ( p .(+) z ) = z } ) ) : No typesetting found for |- ( M e. Grp -> ( z e. ( B FixPts .(+) ) <-> z e. { z e. B | A. p e. B ( p .(+) z ) = z } ) ) with typecode |-
35 31 34 bitr4d Could not format ( M e. Grp -> ( z e. Z <-> z e. ( B FixPts .(+) ) ) ) : No typesetting found for |- ( M e. Grp -> ( z e. Z <-> z e. ( B FixPts .(+) ) ) ) with typecode |-
36 35 eqrdv Could not format ( M e. Grp -> Z = ( B FixPts .(+) ) ) : No typesetting found for |- ( M e. Grp -> Z = ( B FixPts .(+) ) ) with typecode |-