Metamath Proof Explorer


Theorem cnvbramul

Description: Multiplication property of the converse bra function. (Contributed by NM, 31-May-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvbramul ATLinFnContFnbra-1A·fnT=Abra-1T

Proof

Step Hyp Ref Expression
1 cnvbracl TLinFnContFnbra-1T
2 cjcl AA
3 brafnmul Abra-1TbraAbra-1T=A·fnbrabra-1T
4 2 3 sylan Abra-1TbraAbra-1T=A·fnbrabra-1T
5 cjcj AA=A
6 5 adantr Abra-1TA=A
7 6 oveq1d Abra-1TA·fnbrabra-1T=A·fnbrabra-1T
8 4 7 eqtrd Abra-1TbraAbra-1T=A·fnbrabra-1T
9 1 8 sylan2 ATLinFnContFnbraAbra-1T=A·fnbrabra-1T
10 bracnvbra TLinFnContFnbrabra-1T=T
11 10 oveq2d TLinFnContFnA·fnbrabra-1T=A·fnT
12 11 adantl ATLinFnContFnA·fnbrabra-1T=A·fnT
13 9 12 eqtrd ATLinFnContFnbraAbra-1T=A·fnT
14 13 fveq2d ATLinFnContFnbra-1braAbra-1T=bra-1A·fnT
15 hvmulcl Abra-1TAbra-1T
16 2 1 15 syl2an ATLinFnContFnAbra-1T
17 cnvbrabra Abra-1Tbra-1braAbra-1T=Abra-1T
18 16 17 syl ATLinFnContFnbra-1braAbra-1T=Abra-1T
19 14 18 eqtr3d ATLinFnContFnbra-1A·fnT=Abra-1T