Metamath Proof Explorer


Theorem cnvoprabOLD

Description: The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cnvoprabOLD.x x ψ
cnvoprabOLD.y y ψ
cnvoprabOLD.1 a = x y ψ φ
cnvoprabOLD.2 ψ a V × V
Assertion cnvoprabOLD x y z | φ -1 = z a | ψ

Proof

Step Hyp Ref Expression
1 cnvoprabOLD.x x ψ
2 cnvoprabOLD.y y ψ
3 cnvoprabOLD.1 a = x y ψ φ
4 cnvoprabOLD.2 ψ a V × V
5 excom a z w = a z ψ z a w = a z ψ
6 nfv x w = a z
7 6 1 nfan x w = a z ψ
8 7 nfex x a w = a z ψ
9 nfv y w = a z
10 9 2 nfan y w = a z ψ
11 10 nfex y a w = a z ψ
12 opex x y V
13 opeq1 a = x y a z = x y z
14 13 eqeq2d a = x y w = a z w = x y z
15 14 3 anbi12d a = x y w = a z ψ w = x y z φ
16 12 15 spcev w = x y z φ a w = a z ψ
17 11 16 exlimi y w = x y z φ a w = a z ψ
18 8 17 exlimi x y w = x y z φ a w = a z ψ
19 4 adantl w = a z ψ a V × V
20 fvex 1 st a V
21 fvex 2 nd a V
22 eqcom 1 st a = x x = 1 st a
23 eqcom 2 nd a = y y = 2 nd a
24 22 23 anbi12i 1 st a = x 2 nd a = y x = 1 st a y = 2 nd a
25 eqopi a V × V 1 st a = x 2 nd a = y a = x y
26 24 25 sylan2br a V × V x = 1 st a y = 2 nd a a = x y
27 15 bicomd a = x y w = x y z φ w = a z ψ
28 26 27 syl a V × V x = 1 st a y = 2 nd a w = x y z φ w = a z ψ
29 7 10 28 spc2ed a V × V 1 st a V 2 nd a V w = a z ψ x y w = x y z φ
30 20 21 29 mpanr12 a V × V w = a z ψ x y w = x y z φ
31 19 30 mpcom w = a z ψ x y w = x y z φ
32 31 exlimiv a w = a z ψ x y w = x y z φ
33 18 32 impbii x y w = x y z φ a w = a z ψ
34 33 exbii z x y w = x y z φ z a w = a z ψ
35 exrot3 z x y w = x y z φ x y z w = x y z φ
36 5 34 35 3bitr2ri x y z w = x y z φ a z w = a z ψ
37 36 abbii w | x y z w = x y z φ = w | a z w = a z ψ
38 df-oprab x y z | φ = w | x y z w = x y z φ
39 df-opab a z | ψ = w | a z w = a z ψ
40 37 38 39 3eqtr4ri a z | ψ = x y z | φ
41 40 cnveqi a z | ψ -1 = x y z | φ -1
42 cnvopab a z | ψ -1 = z a | ψ
43 41 42 eqtr3i x y z | φ -1 = z a | ψ