Metamath Proof Explorer


Theorem cnvoprabOLD

Description: The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cnvoprabOLD.x xψ
cnvoprabOLD.y yψ
cnvoprabOLD.1 a=xyψφ
cnvoprabOLD.2 ψaV×V
Assertion cnvoprabOLD xyz|φ-1=za|ψ

Proof

Step Hyp Ref Expression
1 cnvoprabOLD.x xψ
2 cnvoprabOLD.y yψ
3 cnvoprabOLD.1 a=xyψφ
4 cnvoprabOLD.2 ψaV×V
5 excom azw=azψzaw=azψ
6 nfv xw=az
7 6 1 nfan xw=azψ
8 7 nfex xaw=azψ
9 nfv yw=az
10 9 2 nfan yw=azψ
11 10 nfex yaw=azψ
12 opex xyV
13 opeq1 a=xyaz=xyz
14 13 eqeq2d a=xyw=azw=xyz
15 14 3 anbi12d a=xyw=azψw=xyzφ
16 12 15 spcev w=xyzφaw=azψ
17 11 16 exlimi yw=xyzφaw=azψ
18 8 17 exlimi xyw=xyzφaw=azψ
19 4 adantl w=azψaV×V
20 fvex 1staV
21 fvex 2ndaV
22 eqcom 1sta=xx=1sta
23 eqcom 2nda=yy=2nda
24 22 23 anbi12i 1sta=x2nda=yx=1stay=2nda
25 eqopi aV×V1sta=x2nda=ya=xy
26 24 25 sylan2br aV×Vx=1stay=2ndaa=xy
27 15 bicomd a=xyw=xyzφw=azψ
28 26 27 syl aV×Vx=1stay=2ndaw=xyzφw=azψ
29 7 10 28 spc2ed aV×V1staV2ndaVw=azψxyw=xyzφ
30 20 21 29 mpanr12 aV×Vw=azψxyw=xyzφ
31 19 30 mpcom w=azψxyw=xyzφ
32 31 exlimiv aw=azψxyw=xyzφ
33 18 32 impbii xyw=xyzφaw=azψ
34 33 exbii zxyw=xyzφzaw=azψ
35 exrot3 zxyw=xyzφxyzw=xyzφ
36 5 34 35 3bitr2ri xyzw=xyzφazw=azψ
37 36 abbii w|xyzw=xyzφ=w|azw=azψ
38 df-oprab xyz|φ=w|xyzw=xyzφ
39 df-opab az|ψ=w|azw=azψ
40 37 38 39 3eqtr4ri az|ψ=xyz|φ
41 40 cnveqi az|ψ-1=xyz|φ-1
42 cnvopab az|ψ-1=za|ψ
43 41 42 eqtr3i xyz|φ-1=za|ψ