Description: The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnvoprabOLD.x | |
|
cnvoprabOLD.y | |
||
cnvoprabOLD.1 | |
||
cnvoprabOLD.2 | |
||
Assertion | cnvoprabOLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvoprabOLD.x | |
|
2 | cnvoprabOLD.y | |
|
3 | cnvoprabOLD.1 | |
|
4 | cnvoprabOLD.2 | |
|
5 | excom | |
|
6 | nfv | |
|
7 | 6 1 | nfan | |
8 | 7 | nfex | |
9 | nfv | |
|
10 | 9 2 | nfan | |
11 | 10 | nfex | |
12 | opex | |
|
13 | opeq1 | |
|
14 | 13 | eqeq2d | |
15 | 14 3 | anbi12d | |
16 | 12 15 | spcev | |
17 | 11 16 | exlimi | |
18 | 8 17 | exlimi | |
19 | 4 | adantl | |
20 | fvex | |
|
21 | fvex | |
|
22 | eqcom | |
|
23 | eqcom | |
|
24 | 22 23 | anbi12i | |
25 | eqopi | |
|
26 | 24 25 | sylan2br | |
27 | 15 | bicomd | |
28 | 26 27 | syl | |
29 | 7 10 28 | spc2ed | |
30 | 20 21 29 | mpanr12 | |
31 | 19 30 | mpcom | |
32 | 31 | exlimiv | |
33 | 18 32 | impbii | |
34 | 33 | exbii | |
35 | exrot3 | |
|
36 | 5 34 35 | 3bitr2ri | |
37 | 36 | abbii | |
38 | df-oprab | |
|
39 | df-opab | |
|
40 | 37 38 39 | 3eqtr4ri | |
41 | 40 | cnveqi | |
42 | cnvopab | |
|
43 | 41 42 | eqtr3i | |