Metamath Proof Explorer


Theorem cnvps

Description: The converse of a poset is a poset. In the general case (`' R e. PosetRel -> R e. PosetRel ) ` is not true. See cnvpsb for a special case where the property holds. (Contributed by FL, 5-Jan-2009) (Proof shortened by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion cnvps R PosetRel R -1 PosetRel

Proof

Step Hyp Ref Expression
1 relcnv Rel R -1
2 1 a1i R PosetRel Rel R -1
3 cnvco R R -1 = R -1 R -1
4 pstr2 R PosetRel R R R
5 cnvss R R R R R -1 R -1
6 4 5 syl R PosetRel R R -1 R -1
7 3 6 eqsstrrid R PosetRel R -1 R -1 R -1
8 psrel R PosetRel Rel R
9 dfrel2 Rel R R -1 -1 = R
10 8 9 sylib R PosetRel R -1 -1 = R
11 10 ineq2d R PosetRel R -1 R -1 -1 = R -1 R
12 incom R -1 R = R R -1
13 11 12 eqtrdi R PosetRel R -1 R -1 -1 = R R -1
14 psref2 R PosetRel R R -1 = I R
15 relcnvfld Rel R R = R -1
16 8 15 syl R PosetRel R = R -1
17 16 reseq2d R PosetRel I R = I R -1
18 13 14 17 3eqtrd R PosetRel R -1 R -1 -1 = I R -1
19 cnvexg R PosetRel R -1 V
20 isps R -1 V R -1 PosetRel Rel R -1 R -1 R -1 R -1 R -1 R -1 -1 = I R -1
21 19 20 syl R PosetRel R -1 PosetRel Rel R -1 R -1 R -1 R -1 R -1 R -1 -1 = I R -1
22 2 7 18 21 mpbir3and R PosetRel R -1 PosetRel