Metamath Proof Explorer


Theorem cnvssb

Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion cnvssb Rel A A B A -1 B -1

Proof

Step Hyp Ref Expression
1 cnvss A B A -1 B -1
2 cnvss A -1 B -1 A -1 -1 B -1 -1
3 dfrel2 Rel A A -1 -1 = A
4 3 biimpi Rel A A -1 -1 = A
5 4 eqcomd Rel A A = A -1 -1
6 5 adantr Rel A A -1 -1 B -1 -1 A = A -1 -1
7 id A -1 -1 B -1 -1 A -1 -1 B -1 -1
8 cnvcnvss B -1 -1 B
9 7 8 sstrdi A -1 -1 B -1 -1 A -1 -1 B
10 9 adantl Rel A A -1 -1 B -1 -1 A -1 -1 B
11 6 10 eqsstrd Rel A A -1 -1 B -1 -1 A B
12 11 ex Rel A A -1 -1 B -1 -1 A B
13 2 12 syl5 Rel A A -1 B -1 A B
14 1 13 impbid2 Rel A A B A -1 B -1