Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
RP ADDTO: Relations
cnvssb
Next ⟩
relnonrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnvssb
Description:
Subclass theorem for converse.
(Contributed by
RP
, 22-Oct-2020)
Ref
Expression
Assertion
cnvssb
⊢
Rel
⁡
A
→
A
⊆
B
↔
A
-1
⊆
B
-1
Proof
Step
Hyp
Ref
Expression
1
cnvss
⊢
A
⊆
B
→
A
-1
⊆
B
-1
2
cnvss
⊢
A
-1
⊆
B
-1
→
A
-1
-1
⊆
B
-1
-1
3
dfrel2
⊢
Rel
⁡
A
↔
A
-1
-1
=
A
4
3
biimpi
⊢
Rel
⁡
A
→
A
-1
-1
=
A
5
4
eqcomd
⊢
Rel
⁡
A
→
A
=
A
-1
-1
6
5
adantr
⊢
Rel
⁡
A
∧
A
-1
-1
⊆
B
-1
-1
→
A
=
A
-1
-1
7
id
⊢
A
-1
-1
⊆
B
-1
-1
→
A
-1
-1
⊆
B
-1
-1
8
cnvcnvss
⊢
B
-1
-1
⊆
B
9
7
8
sstrdi
⊢
A
-1
-1
⊆
B
-1
-1
→
A
-1
-1
⊆
B
10
9
adantl
⊢
Rel
⁡
A
∧
A
-1
-1
⊆
B
-1
-1
→
A
-1
-1
⊆
B
11
6
10
eqsstrd
⊢
Rel
⁡
A
∧
A
-1
-1
⊆
B
-1
-1
→
A
⊆
B
12
11
ex
⊢
Rel
⁡
A
→
A
-1
-1
⊆
B
-1
-1
→
A
⊆
B
13
2
12
syl5
⊢
Rel
⁡
A
→
A
-1
⊆
B
-1
→
A
⊆
B
14
1
13
impbid2
⊢
Rel
⁡
A
→
A
⊆
B
↔
A
-1
⊆
B
-1