Metamath Proof Explorer


Theorem coahom

Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o · ˙ = comp a C
homdmcoa.h H = Hom a C
homdmcoa.f φ F X H Y
homdmcoa.g φ G Y H Z
Assertion coahom φ G · ˙ F X H Z

Proof

Step Hyp Ref Expression
1 homdmcoa.o · ˙ = comp a C
2 homdmcoa.h H = Hom a C
3 homdmcoa.f φ F X H Y
4 homdmcoa.g φ G Y H Z
5 eqid comp C = comp C
6 1 2 3 4 5 coaval φ G · ˙ F = X Z 2 nd G X Y comp C Z 2 nd F
7 eqid Base C = Base C
8 2 homarcl F X H Y C Cat
9 3 8 syl φ C Cat
10 eqid Hom C = Hom C
11 2 7 homarcl2 F X H Y X Base C Y Base C
12 3 11 syl φ X Base C Y Base C
13 12 simpld φ X Base C
14 2 7 homarcl2 G Y H Z Y Base C Z Base C
15 4 14 syl φ Y Base C Z Base C
16 15 simprd φ Z Base C
17 12 simprd φ Y Base C
18 2 10 homahom F X H Y 2 nd F X Hom C Y
19 3 18 syl φ 2 nd F X Hom C Y
20 2 10 homahom G Y H Z 2 nd G Y Hom C Z
21 4 20 syl φ 2 nd G Y Hom C Z
22 7 10 5 9 13 17 16 19 21 catcocl φ 2 nd G X Y comp C Z 2 nd F X Hom C Z
23 2 7 9 10 13 16 22 elhomai2 φ X Z 2 nd G X Y comp C Z 2 nd F X H Z
24 6 23 eqeltrd φ G · ˙ F X H Z