Metamath Proof Explorer


Theorem coahom

Description: The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o ·˙=compaC
homdmcoa.h H=HomaC
homdmcoa.f φFXHY
homdmcoa.g φGYHZ
Assertion coahom φG·˙FXHZ

Proof

Step Hyp Ref Expression
1 homdmcoa.o ·˙=compaC
2 homdmcoa.h H=HomaC
3 homdmcoa.f φFXHY
4 homdmcoa.g φGYHZ
5 eqid compC=compC
6 1 2 3 4 5 coaval φG·˙F=XZ2ndGXYcompCZ2ndF
7 eqid BaseC=BaseC
8 2 homarcl FXHYCCat
9 3 8 syl φCCat
10 eqid HomC=HomC
11 2 7 homarcl2 FXHYXBaseCYBaseC
12 3 11 syl φXBaseCYBaseC
13 12 simpld φXBaseC
14 2 7 homarcl2 GYHZYBaseCZBaseC
15 4 14 syl φYBaseCZBaseC
16 15 simprd φZBaseC
17 12 simprd φYBaseC
18 2 10 homahom FXHY2ndFXHomCY
19 3 18 syl φ2ndFXHomCY
20 2 10 homahom GYHZ2ndGYHomCZ
21 4 20 syl φ2ndGYHomCZ
22 7 10 5 9 13 17 16 19 21 catcocl φ2ndGXYcompCZ2ndFXHomCZ
23 2 7 9 10 13 16 22 elhomai2 φXZ2ndGXYcompCZ2ndFXHZ
24 6 23 eqeltrd φG·˙FXHZ