Metamath Proof Explorer


Theorem cocnv

Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion cocnv FunFFunGFGG-1=FranG

Proof

Step Hyp Ref Expression
1 coass FGG-1=FGG-1
2 funcocnv2 FunGGG-1=IranG
3 2 adantl FunFFunGGG-1=IranG
4 3 coeq2d FunFFunGFGG-1=FIranG
5 resco FIranG=FIranG
6 funrel FunFRelF
7 coi1 RelFFI=F
8 6 7 syl FunFFI=F
9 8 reseq1d FunFFIranG=FranG
10 9 adantr FunFFunGFIranG=FranG
11 5 10 eqtr3id FunFFunGFIranG=FranG
12 4 11 eqtrd FunFFunGFGG-1=FranG
13 1 12 eqtrid FunFFunGFGG-1=FranG