Metamath Proof Explorer


Theorem coe1tmfv2

Description: Zero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses coe1tm.z 0˙=0R
coe1tm.k K=BaseR
coe1tm.p P=Poly1R
coe1tm.x X=var1R
coe1tm.m ·˙=P
coe1tm.n N=mulGrpP
coe1tm.e ×˙=N
coe1tmfv2.r φRRing
coe1tmfv2.c φCK
coe1tmfv2.d φD0
coe1tmfv2.f φF0
coe1tmfv2.q φDF
Assertion coe1tmfv2 φcoe1C·˙D×˙XF=0˙

Proof

Step Hyp Ref Expression
1 coe1tm.z 0˙=0R
2 coe1tm.k K=BaseR
3 coe1tm.p P=Poly1R
4 coe1tm.x X=var1R
5 coe1tm.m ·˙=P
6 coe1tm.n N=mulGrpP
7 coe1tm.e ×˙=N
8 coe1tmfv2.r φRRing
9 coe1tmfv2.c φCK
10 coe1tmfv2.d φD0
11 coe1tmfv2.f φF0
12 coe1tmfv2.q φDF
13 1 2 3 4 5 6 7 coe1tm RRingCKD0coe1C·˙D×˙X=x0ifx=DC0˙
14 8 9 10 13 syl3anc φcoe1C·˙D×˙X=x0ifx=DC0˙
15 14 fveq1d φcoe1C·˙D×˙XF=x0ifx=DC0˙F
16 eqid x0ifx=DC0˙=x0ifx=DC0˙
17 eqeq1 x=Fx=DF=D
18 17 ifbid x=Fifx=DC0˙=ifF=DC0˙
19 2 1 ring0cl RRing0˙K
20 8 19 syl φ0˙K
21 9 20 ifcld φifF=DC0˙K
22 16 18 11 21 fvmptd3 φx0ifx=DC0˙F=ifF=DC0˙
23 12 necomd φFD
24 23 neneqd φ¬F=D
25 24 iffalsed φifF=DC0˙=0˙
26 15 22 25 3eqtrd φcoe1C·˙D×˙XF=0˙