Metamath Proof Explorer


Theorem coinfliplem

Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Hypotheses coinflip.h H V
coinflip.t T V
coinflip.th H T
coinflip.2 P = . 𝒫 H T fc ÷ 2
coinflip.3 X = H 1 T 0
Assertion coinfliplem P = . 𝒫 H T fc ÷ 𝑒 2

Proof

Step Hyp Ref Expression
1 coinflip.h H V
2 coinflip.t T V
3 coinflip.th H T
4 coinflip.2 P = . 𝒫 H T fc ÷ 2
5 coinflip.3 X = H 1 T 0
6 simpr H V x 𝒫 H T x 𝒫 H T
7 fvres x 𝒫 H T . 𝒫 H T x = x
8 6 7 syl H V x 𝒫 H T . 𝒫 H T x = x
9 prfi H T Fin
10 6 elpwid H V x 𝒫 H T x H T
11 ssfi H T Fin x H T x Fin
12 9 10 11 sylancr H V x 𝒫 H T x Fin
13 hashcl x Fin x 0
14 12 13 syl H V x 𝒫 H T x 0
15 14 nn0red H V x 𝒫 H T x
16 8 15 eqeltrd H V x 𝒫 H T . 𝒫 H T x
17 simpr H V y y
18 2re 2
19 18 a1i H V y 2
20 2ne0 2 0
21 20 a1i H V y 2 0
22 rexdiv y 2 2 0 y ÷ 𝑒 2 = y 2
23 17 19 21 22 syl3anc H V y y ÷ 𝑒 2 = y 2
24 hashresfn . 𝒫 H T Fn 𝒫 H T
25 24 a1i H V . 𝒫 H T Fn 𝒫 H T
26 pwfi H T Fin 𝒫 H T Fin
27 9 26 mpbi 𝒫 H T Fin
28 27 a1i H V 𝒫 H T Fin
29 18 a1i H V 2
30 16 23 25 28 29 ofcfeqd2 H V . 𝒫 H T fc ÷ 𝑒 2 = . 𝒫 H T fc ÷ 2
31 1 30 ax-mp . 𝒫 H T fc ÷ 𝑒 2 = . 𝒫 H T fc ÷ 2
32 4 31 eqtr4i P = . 𝒫 H T fc ÷ 𝑒 2