Metamath Proof Explorer


Theorem colperpex

Description: In dimension 2 and above, on a line ( A L B ) there is always a perpendicular P from A on a given plane (here given by C , in case C does not lie on the line). Theorem 8.21 of Schwabhauser p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
colperpex.1 φAP
colperpex.2 φBP
colperpex.3 φCP
colperpex.4 φAB
colperpex.5 φGDim𝒢2
Assertion colperpex φpPALp𝒢GALBtPtALBA=BtCIp

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 colperpex.1 φAP
7 colperpex.2 φBP
8 colperpex.3 φCP
9 colperpex.4 φAB
10 colperpex.5 φGDim𝒢2
11 5 ad3antrrr φCALBdP¬dALBG𝒢Tarski
12 6 ad3antrrr φCALBdP¬dALBAP
13 7 ad3antrrr φCALBdP¬dALBBP
14 simplr φCALBdP¬dALBdP
15 9 ad3antrrr φCALBdP¬dALBAB
16 simpr φCALBdP¬dALB¬dALB
17 1 2 3 4 11 12 13 14 15 16 colperpexlem3 φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIp
18 simprl φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIpALp𝒢GALB
19 8 ad5antr φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIpCP
20 simp-5r φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIpCALB
21 20 orcd φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIpCALBA=B
22 5 ad5antr φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIpG𝒢Tarski
23 simplr φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIppP
24 1 2 3 22 19 23 tgbtwntriv1 φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIpCCIp
25 eleq1 t=CtALBCALB
26 25 orbi1d t=CtALBA=BCALBA=B
27 eleq1 t=CtCIpCCIp
28 26 27 anbi12d t=CtALBA=BtCIpCALBA=BCCIp
29 28 rspcev CPCALBA=BCCIptPtALBA=BtCIp
30 19 21 24 29 syl12anc φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIptPtALBA=BtCIp
31 18 30 jca φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIpALp𝒢GALBtPtALBA=BtCIp
32 31 ex φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIpALp𝒢GALBtPtALBA=BtCIp
33 32 reximdva φCALBdP¬dALBpPALp𝒢GALBsPsALBA=BsdIppPALp𝒢GALBtPtALBA=BtCIp
34 17 33 mpd φCALBdP¬dALBpPALp𝒢GALBtPtALBA=BtCIp
35 5 adantr φCALBG𝒢Tarski
36 10 adantr φCALBGDim𝒢2
37 6 adantr φCALBAP
38 7 adantr φCALBBP
39 9 adantr φCALBAB
40 1 3 4 35 36 37 38 39 tglowdim2ln φCALBdP¬dALB
41 34 40 r19.29a φCALBpPALp𝒢GALBtPtALBA=BtCIp
42 5 adantr φ¬CALBG𝒢Tarski
43 6 adantr φ¬CALBAP
44 7 adantr φ¬CALBBP
45 8 adantr φ¬CALBCP
46 9 adantr φ¬CALBAB
47 simpr φ¬CALB¬CALB
48 1 2 3 4 42 43 44 45 46 47 colperpexlem3 φ¬CALBpPALp𝒢GALBtPtALBA=BtCIp
49 41 48 pm2.61dan φpPALp𝒢GALBtPtALBA=BtCIp