Metamath Proof Explorer


Theorem coltr3

Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019)

Ref Expression
Hypotheses tglineintmo.p P = Base G
tglineintmo.i I = Itv G
tglineintmo.l L = Line 𝒢 G
tglineintmo.g φ G 𝒢 Tarski
coltr.a φ A P
coltr.b φ B P
coltr.c φ C P
coltr.d φ D P
coltr.1 φ A B L C
coltr3.2 φ D A I C
Assertion coltr3 φ D B L C

Proof

Step Hyp Ref Expression
1 tglineintmo.p P = Base G
2 tglineintmo.i I = Itv G
3 tglineintmo.l L = Line 𝒢 G
4 tglineintmo.g φ G 𝒢 Tarski
5 coltr.a φ A P
6 coltr.b φ B P
7 coltr.c φ C P
8 coltr.d φ D P
9 coltr.1 φ A B L C
10 coltr3.2 φ D A I C
11 eqid dist G = dist G
12 4 adantr φ A = C G 𝒢 Tarski
13 5 adantr φ A = C A P
14 8 adantr φ A = C D P
15 10 adantr φ A = C D A I C
16 simpr φ A = C A = C
17 16 oveq2d φ A = C A I A = A I C
18 15 17 eleqtrrd φ A = C D A I A
19 1 11 2 12 13 14 18 axtgbtwnid φ A = C A = D
20 9 adantr φ A = C A B L C
21 19 20 eqeltrrd φ A = C D B L C
22 4 adantr φ A C G 𝒢 Tarski
23 5 adantr φ A C A P
24 7 adantr φ A C C P
25 8 adantr φ A C D P
26 simpr φ A C A C
27 10 adantr φ A C D A I C
28 1 2 3 22 23 24 25 26 27 btwnlng1 φ A C D A L C
29 26 necomd φ A C C A
30 6 adantr φ A C B P
31 1 3 2 4 6 7 9 tglngne φ B C
32 31 adantr φ A C B C
33 9 adantr φ A C A B L C
34 1 2 3 22 24 23 30 29 33 32 lnrot1 φ A C B C L A
35 1 2 3 22 24 23 29 30 32 34 tglineelsb2 φ A C C L A = C L B
36 1 2 3 22 23 24 26 tglinecom φ A C A L C = C L A
37 1 2 3 4 6 7 31 tglinecom φ B L C = C L B
38 37 adantr φ A C B L C = C L B
39 35 36 38 3eqtr4d φ A C A L C = B L C
40 28 39 eleqtrd φ A C D B L C
41 21 40 pm2.61dane φ D B L C